Application of sinusoidal analysis to feature extraction in rotating machine vibration signals

Author(s):  
Dionisio Martins ◽  
Diego Haddad ◽  
Amaro Lima ◽  
Milena Pinto ◽  
Denys Pestana-Viana ◽  
...  
2004 ◽  
Vol 18 (6) ◽  
pp. 1285-1314 ◽  
Author(s):  
J. Antoni ◽  
F. Bonnardot ◽  
A. Raad ◽  
M. El Badaoui

2020 ◽  
Vol 23 (7) ◽  
pp. 25-33
Author(s):  
Luciane Agnoletti dos Santos Pedotti ◽  
Ricardo Mazza Zago ◽  
Mateus Giesbrecht ◽  
Fabiano Fruett

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Author(s):  
Juanjuan Shi ◽  
Ming Liang

Vibration analysis has been extensively used as an effective tool for bearing condition monitoring. The vibration signal collected from a defective bearing is, however, a mixture of several signal components including the fault feature (i.e. fault-induced impulses), periodic interferences from other mechanical/electrical components, and background noise. The incipient impulses which excite as well as modulate the resonance frequency of the system are easily masked by compounded effects of periodic interferences and noise, making it challenging to do a reliable fault diagnosis. As such, this paper proposes an envelope demodulation method termed short time fractal dimension (STFD) transform for fault feature extraction from such vibration signal mixture. STFD transform calculation related issues are first addressed. Then, by STFD, the original signal can be quickly transformed into a STFD representation, where the envelope of fault-induced impulses becomes more pronounced whereas interferences are partly weakened due to their morphological appearance differences. It has been found that the lower the interference frequency, the less effect the interference has on STFD representations. When interference frequency keeps increasing, more effects on STFD representations will be resulted. Such effects can be reduced by the proposed kurtosis-based peak search algorithm (KPSA). Therefore, bearing fault signature is kept and interferences are further weakened in the STFD-KPSA representation. The proposed method has been favourably compared with two widely used enveloping methods, i.e. multi-morphological analysis and energy operator, in terms of extracting impulse envelopes from vibration signals obscured by multiple interferences. Its performance has also been examined using both simulated and experimental data.


Author(s):  
Cyprian F. Ngolah ◽  
Ed Morden ◽  
Yingxu Wang

Monitoring industrial machine health in real-time is not only in high demand, it is also complicated and difficult. Possible reasons for this include: (a) access to the machines on site is sometimes impracticable, and (b) the environment in which they operate is usually not human-friendly due to pollution, noise, hazardous wastes, etc. Despite theoretically sound findings on developing intelligent solutions for machine condition-based monitoring, few commercial tools exist in the market that can be readily used. This paper examines the development of an intelligent fault recognition and monitoring system (Melvin I), which detects and diagnoses rotating machine conditions according to changes in fault frequency indicators. The signals and data are remotely collected from designated sections of machines via data acquisition cards. They are processed by a signal processor to extract characteristic vibration signals of ten key performance indicators (KPIs). A 3-layer neural network is designed to recognize and classify faults based on a pre-determined set of KPIs. The system implemented in the laboratory and applied in the field can also incorporate new experiences into the knowledge base without overwriting previous training. Results show that Melvin I is a smart tool for both system vibration analysts and industrial machine operators.


2019 ◽  
Vol 9 (18) ◽  
pp. 3642
Author(s):  
Lin Liang ◽  
Haobin Wen ◽  
Fei Liu ◽  
Guang Li ◽  
Maolin Li

The incipient damages of mechanical equipment excite weak impulse vibration, which is hidden, almost unobservable, in the collected signal, making fault detection and failure prevention at the inchoate stage rather challenging. Traditional feature extraction techniques, such as bandpass filtering and time-frequency analysis, are suitable for matrix processing but challenged by the higher-order data. To tackle these problems, a novel method of impulse feature extraction for vibration signals, based on sparse non-negative tensor factorization is presented in this paper. Primarily, the phase space reconstruction and the short time Fourier transform are successively employed to convert the original signal into time-frequency distributions, which are further arranged into a three-way tensor to obtain a time-frequency multi-aspect array. The tensor is decomposed by sparse non-negative tensor factorization via hierarchical alternating least squares algorithm, after which the latent components are reconstructed from the factors by the inverse short time Fourier transform and eventually help extract the impulse feature through envelope analysis. For performance verification, the experimental analysis on the bearing datasets and the swashplate piston pump has confirmed the effectiveness of the proposed method. Comparisons to the traditional methods, including maximum correlated kurtosis deconvolution, singular value decomposition, and maximum spectrum kurtosis, also suggest its better performance of feature extraction.


2017 ◽  
Vol 868 ◽  
pp. 363-368
Author(s):  
Bang Sheng Xing ◽  
Le Xu

For the situation that it is difficult to diagnose rolling bearings fault effectively for small samples, so it proposes a feature extraction method of rolling bearing based on local mean decomposition (LMD) energy feature. Due to the frequency domain distribution of vibration signals will change when different faults occur in rolling bearings, so it can use LMD energy feature method to extract the fault features of rolling bearings. The instances analysis and extracted results show that the LMD energy feature can extract the vibration signal fault feature of rolling bearings effectively.


Sign in / Sign up

Export Citation Format

Share Document