scholarly journals Genetic Programming with Delayed Routing for Multi-Objective Dynamic Flexible Job Shop Scheduling

2020 ◽  
Author(s):  
Binzi Xu ◽  
Yi Mei ◽  
Yan Wang ◽  
Zhicheng Ji ◽  
Mengjie Zhang

Dynamic Flexible Job Shop Scheduling (DFJSS) is an important and challenging problem, and can have multiple conflicting objectives. Genetic Programming Hyper-Heuristic (GPHH) is a promising approach to fast respond to the dynamic and unpredictable events in DFJSS. A GPHH algorithm evolves dispatching rules (DRs) that are used to make decisions during the scheduling process (i.e. the so-called heuristic template). In DFJSS, there are two kinds of scheduling decisions: the routing decision that allocates each operation to a machine to process it, and the sequencing decision that selects the next job to be processed by each idle machine. The traditional heuristic template makes both routing and sequencing decisions in a non-delay manner, which may have limitations in handling the dynamic environment. In this paper, we propose a novel heuristic template that delays the routing decisions rather than making them immediately. This way, all the decisions can be made under the latest and more accurate information. We propose three different delayed routing strategies, and automatically evolve the rules in the heuristic template by GPHH. We evaluate the newly proposed GPHH with Delayed Routing (GPHH-DR) on a multi-objective DFJSS that optimises the energy efficiency and mean tardiness. The experimental results show that GPHH-DR significantly outperformed the state-of-the-art GPHH methods. We further demonstrated the efficacy of the proposed heuristic template with delayed routing, which suggests the importance of delaying the routing decisions.

2020 ◽  
Author(s):  
Binzi Xu ◽  
Yi Mei ◽  
Yan Wang ◽  
Zhicheng Ji ◽  
Mengjie Zhang

Dynamic Flexible Job Shop Scheduling (DFJSS) is an important and challenging problem, and can have multiple conflicting objectives. Genetic Programming Hyper-Heuristic (GPHH) is a promising approach to fast respond to the dynamic and unpredictable events in DFJSS. A GPHH algorithm evolves dispatching rules (DRs) that are used to make decisions during the scheduling process (i.e. the so-called heuristic template). In DFJSS, there are two kinds of scheduling decisions: the routing decision that allocates each operation to a machine to process it, and the sequencing decision that selects the next job to be processed by each idle machine. The traditional heuristic template makes both routing and sequencing decisions in a non-delay manner, which may have limitations in handling the dynamic environment. In this paper, we propose a novel heuristic template that delays the routing decisions rather than making them immediately. This way, all the decisions can be made under the latest and more accurate information. We propose three different delayed routing strategies, and automatically evolve the rules in the heuristic template by GPHH. We evaluate the newly proposed GPHH with Delayed Routing (GPHH-DR) on a multi-objective DFJSS that optimises the energy efficiency and mean tardiness. The experimental results show that GPHH-DR significantly outperformed the state-of-the-art GPHH methods. We further demonstrated the efficacy of the proposed heuristic template with delayed routing, which suggests the importance of delaying the routing decisions.


2020 ◽  
pp. 1-31
Author(s):  
Binzi Xu ◽  
Yi Mei ◽  
Yan Wang ◽  
Zhicheng Ji ◽  
Mengjie Zhang

Dynamic Flexible Job Shop Scheduling (DFJSS) is an important and challenging problem, and can have multiple conflicting objectives. Genetic Programming Hyper-Heuristic (GPHH) is a promising approach to fast respond to the dynamic and unpredictable events in DFJSS. A GPHH algorithm evolves dispatching rules (DRs) that are used to make decisions during the scheduling process (i.e., the so-called heuristic template). In DFJSS, there are two kinds of scheduling decisions: the routing decision that allocates each operation to a machine to process it, and the sequencing decision that selects the next job to be processed by each idle machine. The traditional heuristic template makes both routing and sequencing decisions in a non-delay manner, which may have limitations in handling the dynamic environment. In this article, we propose a novel heuristic template that delays the routing decisions rather than making them immediately. This way, all the decisions can be made under the latest and most accurate information. We propose three different delayed routing strategies, and automatically evolve the rules in the heuristic template by GPHH. We evaluate the newly proposed GPHH with Delayed Routing (GPHH-DR) on a multiobjective DFJSS that optimises the energy efficiency and mean tardiness. The experimental results show that GPHH-DR significantly outperformed the state-of-the-art GPHH methods. We further demonstrated the efficacy of the proposed heuristic template with delayed routing, which suggests the importance of delaying the routing decisions.


2020 ◽  
Author(s):  
Fangfang Zhang ◽  
Yi Mei ◽  
S Nguyen ◽  
Mengjie Zhang

© 2020, Springer Nature Switzerland AG. Dynamic flexible job shop scheduling (DFJSS) has been widely studied in both academia and industry. Both machine assignment and operation sequencing decisions need to be made simultaneously as an operation can be processed by a set of machines in DFJSS. Using scheduling heuristics to solve the DFJSS problems becomes an effective way due to its efficiency and simplicity. Genetic programming (GP) has been successfully applied to evolve scheduling heuristics for job shop scheduling automatically. However, the subtrees of the selected parents are randomly chosen in traditional GP for crossover and mutation, which may not be sufficiently effective, especially in a huge search space. This paper proposes new strategies to guide the subtree selection rather than picking them randomly. To be specific, the occurrences of features are used to measure the importance of each subtree of the selected parents. The probability to select a subtree is based on its importance and the type of genetic operators. This paper examines the proposed algorithm on six DFJSS scenarios. The results show that the proposed GP algorithm with the guided subtree selection for crossover can converge faster and achieve significantly better performance than its counterpart in half of the scenarios while no worse in all other scenarios without increasing the computational time.


Sign in / Sign up

Export Citation Format

Share Document