scholarly journals Context Awareness and Intelligence in Cognitive  Radio Networks: Design and  Applications

2021 ◽  
Author(s):  
◽  
Kok-Lim Yau

<p>CR technology, which is the next-generation wireless communication system, improves the utilization of the overall radio spectrum through dynamic adaptation to local spectrum availability. In CR networks, unlicensed or Secondary Users (SUs) may operate in underutilized spectrum (called white spaces) owned by the licensed or Primary Users (PUs) conditional upon PUs encountering acceptably low interference levels. Ideally, the PUs are oblivious to the presence of the SUs. Context awareness enables an SU to sense and observe its operating environment, which is complex and dynamic in nature; while intelligence enables the SU to learn knowledge, which can be acquired through observing the consequences of its prior action, about its operating environment so that it carries out the appropriate action to achieve optimum network performance in an efficient manner without following a strict and static predefined set of policies. Traditionally, without the application of intelligence, each wireless host adheres to a strict and static predefined set of policies, which may not be optimum in many kinds of operating environment. With the application of intelligence, the knowledge changes in line with the dynamic operating environment. This thesis investigates the application of an artificial intelligence approach called reinforcement learning to achieve context awareness and intelligence in order to enable the SUs to sense and utilize the high quality white spaces. To date, the research focus of the CR research community has been primarily on the physical layer of the open system interconnection model. The research into the data link layer is still in its infancy, and our research work focusing on this layer has been pioneering in this field and has attacted considerable international interest. There are four major outcomes in this thesis. Firstly, various types of multi-channel medium access control protocols are reviewed, followed by discussion of their merits and demerits. The purpose is to show the additional functionalities and challenges that each multi-channel medium access control protocol has to offer and address in order to operate in CR networks. Secondly, a novel cross-layer based quality of service architecture called C2net for CR networks is proposed to provide service prioritization and tackle the issues associated with CR networks. Thirdly, reinforcement learning is applied to pursue context awareness and intelligence in both centralized and distributed CR networks. Analysis and simulation results show that reinforcement learning is a promising mechanism to achieve context awareness and intelligence. Fourthly, the versatile reinforcement learning approach is applied in various schemes for performance enhancement in CR networks.</p>

2021 ◽  
Author(s):  
◽  
Kok-Lim Yau

<p>CR technology, which is the next-generation wireless communication system, improves the utilization of the overall radio spectrum through dynamic adaptation to local spectrum availability. In CR networks, unlicensed or Secondary Users (SUs) may operate in underutilized spectrum (called white spaces) owned by the licensed or Primary Users (PUs) conditional upon PUs encountering acceptably low interference levels. Ideally, the PUs are oblivious to the presence of the SUs. Context awareness enables an SU to sense and observe its operating environment, which is complex and dynamic in nature; while intelligence enables the SU to learn knowledge, which can be acquired through observing the consequences of its prior action, about its operating environment so that it carries out the appropriate action to achieve optimum network performance in an efficient manner without following a strict and static predefined set of policies. Traditionally, without the application of intelligence, each wireless host adheres to a strict and static predefined set of policies, which may not be optimum in many kinds of operating environment. With the application of intelligence, the knowledge changes in line with the dynamic operating environment. This thesis investigates the application of an artificial intelligence approach called reinforcement learning to achieve context awareness and intelligence in order to enable the SUs to sense and utilize the high quality white spaces. To date, the research focus of the CR research community has been primarily on the physical layer of the open system interconnection model. The research into the data link layer is still in its infancy, and our research work focusing on this layer has been pioneering in this field and has attacted considerable international interest. There are four major outcomes in this thesis. Firstly, various types of multi-channel medium access control protocols are reviewed, followed by discussion of their merits and demerits. The purpose is to show the additional functionalities and challenges that each multi-channel medium access control protocol has to offer and address in order to operate in CR networks. Secondly, a novel cross-layer based quality of service architecture called C2net for CR networks is proposed to provide service prioritization and tackle the issues associated with CR networks. Thirdly, reinforcement learning is applied to pursue context awareness and intelligence in both centralized and distributed CR networks. Analysis and simulation results show that reinforcement learning is a promising mechanism to achieve context awareness and intelligence. Fourthly, the versatile reinforcement learning approach is applied in various schemes for performance enhancement in CR networks.</p>


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1727
Author(s):  
Dmitrii Dugaev ◽  
Zheng Peng ◽  
Yu Luo ◽  
Lina Pu

In this paper, we propose a reinforcement learning (RL) based Medium Access Control (MAC) protocol with dynamic transmission range control (TRC). This protocol provides an adaptive, multi-hop, energy-efficient solution for communication in underwater sensors networks. It features a contention-based TRC scheme with a reactive multi-hop transmission. The protocol has the ability to adjust to network conditions using RL-based learning algorithm. The combination of TRC and RL algorithms can hit a balance between the energy consumption and network performance. Moreover, the proposed adaptive mechanism for relay-selection provides better network utilization and energy-efficiency over time, comparing to existing solutions. Using a straightforward ALOHA-based channel access alongside “helper-relays” (intermediate nodes), the protocol is able to obtain a substantial amount of energy savings, achieving up to 90% of the theoretical “best possible” energy efficiency. In addition, the protocol shows a significant advantage in MAC layer performance, such as network throughput and end-to-end delay.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Mario Manzano ◽  
Felipe Espinosa ◽  
Ángel M. Bravo-Santos ◽  
Alfredo Gardel-Vicente

Within the challenging environment of intelligent transportation systems (ITS), networked control systems such as platooning guidance of autonomous vehicles require innovative mechanisms to provide real-time communications. Although several proposals are currently under discussion, the design of a rapid, efficient, flexible, and reliable medium access control mechanism which meets the specific constraints of such real-time communications applications remains unsolved in this highly dynamic environment. However, cognitive radio (CR) combines the capacity to sense the radio spectrum with the flexibility to adapt to transmission parameters in order to maximize system performance and has thus become an effective approach for the design of dynamic spectrum access (DSA) mechanisms. This paper presents the enhanced noncooperative cognitive division multiple access (ENCCMA) proposal combining time division multiple access (TDMA) and frequency division multiple access (FDMA) schemes with CR techniques to obtain a mechanism fulfilling the requirements of real-time communications. The analysis presented here considers the IEEE WAVE and 802.11p as reference standards; however, the proposed medium access control (MAC) mechanism can be adapted to operate on the physical layer of different standards. The mechanism also offers the advantage of avoiding signaling, thus enhancing system autonomy as well as behavior in adverse scenarios.


Sign in / Sign up

Export Citation Format

Share Document