<p>Stroke is a medical condition causing disability worldwide (Feigin et al., 2014; Murray et al., 2012; National Heart Lung and Blood institute, 2016). It can leave people with physical and cognitive deficits. The individual’s function in everyday activities following a stroke depends on the severity of the stroke and the amount of therapy available to them. Rehabilitation for the physical impairments, such as upper limb deficits, can promote recovery and is delivered by physiotherapists and occupational therapists. Therapy takes place predominantly in the clinical environment. It is manual, task based, delivered one on one, and can be time intensive. Self-management methods for patients’ stroke rehabilitation are gaining attention from healthcare professionals (Taylor, Monsanto, Kilgour, Smith, & Hale, 2019). Rehabilitation that can be done at home has benefits for the individual, the family or caregiver, the therapist and the healthcare system. Independent rehabilitation at home reduces pressure on healthcare resources and can be beneficial for stroke patients recovery. So, medical interventions and products are shifting from clinical to community and home environments. The use of robotics for rehabilitation has the potential to support recovery of function and assist with everyday tasks in a variety of ways. This paper explores the design of a robotic device for the hand. By involving stroke patients, clinicians and carers in the design process, this research aims to improve the user experiences of a robotic device for hand rehabilitation. Designing for the user experience has the potential to improve the engagement and acceptance of the robotic device for independent home therapy. A combination of methods have been used to include users in the design process and gather qualitative data to inform the design. The methodologies include research through design and human-centred design. Research through design includes methods such as a literature review, using and adapting design criteria, prototyping, iteration, user-testing, and thematic analysis. Human-centred design is about involving users in the development process and include methods such as surveys, semi-structured interviews, observations, and user testing. There were four clinicians and seven stroke patients that met inclusion criteria and participated in the testing. Three patients and three clinician participants were involved in the interviews. Personas were used to understand user wants and needs, and to inform criteria for the design process. By using these methods we gain a better understanding of the users’ needs in order to improve the design of the pre-existing robotic upper limb stroke rehabilitation device. The purpose of the design is to meet the needs of the stroke patient in his or her own home. This design study focuses on developing the user experience by addressing usability. Interactions considered during the iterative design process are putting on and taking off the device. It is found through testing and iterations that comfort, cleaning and safety were necessary for this wearable robotic upper limb stroke therapy device to be easily worn and used in the home.</p>