scholarly journals A study of The use of Manuka Honey and Methylglyoxal to Impart Antimicrobial Activity to Wool Textiles and Polymers

2021 ◽  
Author(s):  
◽  
Sami Aljohani

<p><b>Methylglyoxal (MGO), which is an ingredient in New Zealand Manuka honey (MH) possesses unique antimicrobial properties against a broad range of bacteria. MGO has been determined to have a low minimum inhibitory concentration against bacteria. This provides a new opportunity to develop the use of this compound as a natural antimicrobial agent to impart such antimicrobial properties to wool textiles. This is the focus and detailed research work of this thesis. Also, its application to paper and polymer surfaces has been investigated briefly.</b></p> <p>Due to their protein-based structure and porosity, woollen textiles provide a hospitable host for the growth of microorganisms. This microbial growth on such textiles can pose an undesirable health risk to humans and can negatively affect textile sales. the textile market. Similarly, microbial growth on other substrates such as walls, floors and various equipment can also pose health risks. There are a number of antimicrobial treatments on the market, but with the move to more natural-based antimicrobial agents, there is an opportunity to capture the natural antimicrobial properties of MH and particularly the active ingredient MGO, as a natural antimicrobial agent in wool textiles and paper and polymer substrates.</p> <p>This research developed a novel approach and methodology to incorporate MH and also MGO itself as an isolated component and antimicrobial agent of MH, into the wool fibres and chemically bonding it to the fibre proteins. This approach commenced with determining the extent of uptake of MH, based on its MGO concentration, and MGO itself into wool fibres. The extent of MH and MGO uptake has been determined with High-Performance Liquid Chromatography (HPLC). This uptake was studied over a range of MH and MGO concentrations and temperatures using loose top wool, yarn and finished wool fabric. An increase in temperature from room temperature up to 80 °C resulted in significantly higher amounts of MGO and MH being absorbed by the wool. Also, higher concentrations of the initial MGO and MH solutions accelerated the uptake rates and resulted in higher uptake amounts. The relatively slow diffusion rate of MGO into the wool necessarily required a long period of time, up to 14 days, for the particular uptake to generally reach the saturation level. The maximum amounts of MH and MGO that were incorporated into wool fibres in this study were 21.2 mg g-1 and 299 mg g-1 wool, respectively.</p> <p>The chemical interactions between MGO and MGO in MH with the wool fibres have been characterised by Fourier-Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). FTIR spectra showed that the MGO absorption by the wool changed the intensity of particular peaks between 2,000 and 700 cm-1 characteristic of the wool proteins, and the NH stretching peaks of the wool at 3,270 cm-1. The TGA and DSC analyses showed a thermal stability of the wool after MGO absorption and the likely formation of new bonds, probably H-bonds, between the MGO and the wool. Confirming these findings, the MGOWool and MH-Wool showed a resistance against MGO leaching on washing with water, where less than 1% (relative) of MGO leached out. These results suggest the MGO is likely chemically bound to the wool fibres through hydrogen bonding.</p> <p>The MGO-Wool and also MGO-paper composites produced in a similar way with MGO-Wool, exhibited antimicrobial activities against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The MGO-Wool showed bacteriostatic properties for all composites even after three months of being synthesised. This opens up potential applications for the use of MH and MGO in antimicrobial woollen apparel, medical textiles and bandages.</p> <p>In addition, MGO was incorporated into samples of an acrylic polymer NeoCryl® XK-98 and a polyurethane, Kamthane K-5000, polymer resin, respectively. The interaction of MGO with the respective polymer chains resulted in similar hydrogen bonding between MGO and the polymers. At high MGO concentrations this bonding was confirmed by the presence of a new endothermic peak in the DSC pattern. The addition of MGO also modified the polymer surface and resulted in a more hydrophobic surface with an increased water droplet contact angle of 87.5°. The new polymer compositeswere successfully tested against S. aureus and E. coli microbes and were shown to exhibit antimicrobial properties.</p>

2021 ◽  
Author(s):  
◽  
Sami Aljohani

<p><b>Methylglyoxal (MGO), which is an ingredient in New Zealand Manuka honey (MH) possesses unique antimicrobial properties against a broad range of bacteria. MGO has been determined to have a low minimum inhibitory concentration against bacteria. This provides a new opportunity to develop the use of this compound as a natural antimicrobial agent to impart such antimicrobial properties to wool textiles. This is the focus and detailed research work of this thesis. Also, its application to paper and polymer surfaces has been investigated briefly.</b></p> <p>Due to their protein-based structure and porosity, woollen textiles provide a hospitable host for the growth of microorganisms. This microbial growth on such textiles can pose an undesirable health risk to humans and can negatively affect textile sales. the textile market. Similarly, microbial growth on other substrates such as walls, floors and various equipment can also pose health risks. There are a number of antimicrobial treatments on the market, but with the move to more natural-based antimicrobial agents, there is an opportunity to capture the natural antimicrobial properties of MH and particularly the active ingredient MGO, as a natural antimicrobial agent in wool textiles and paper and polymer substrates.</p> <p>This research developed a novel approach and methodology to incorporate MH and also MGO itself as an isolated component and antimicrobial agent of MH, into the wool fibres and chemically bonding it to the fibre proteins. This approach commenced with determining the extent of uptake of MH, based on its MGO concentration, and MGO itself into wool fibres. The extent of MH and MGO uptake has been determined with High-Performance Liquid Chromatography (HPLC). This uptake was studied over a range of MH and MGO concentrations and temperatures using loose top wool, yarn and finished wool fabric. An increase in temperature from room temperature up to 80 °C resulted in significantly higher amounts of MGO and MH being absorbed by the wool. Also, higher concentrations of the initial MGO and MH solutions accelerated the uptake rates and resulted in higher uptake amounts. The relatively slow diffusion rate of MGO into the wool necessarily required a long period of time, up to 14 days, for the particular uptake to generally reach the saturation level. The maximum amounts of MH and MGO that were incorporated into wool fibres in this study were 21.2 mg g-1 and 299 mg g-1 wool, respectively.</p> <p>The chemical interactions between MGO and MGO in MH with the wool fibres have been characterised by Fourier-Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). FTIR spectra showed that the MGO absorption by the wool changed the intensity of particular peaks between 2,000 and 700 cm-1 characteristic of the wool proteins, and the NH stretching peaks of the wool at 3,270 cm-1. The TGA and DSC analyses showed a thermal stability of the wool after MGO absorption and the likely formation of new bonds, probably H-bonds, between the MGO and the wool. Confirming these findings, the MGOWool and MH-Wool showed a resistance against MGO leaching on washing with water, where less than 1% (relative) of MGO leached out. These results suggest the MGO is likely chemically bound to the wool fibres through hydrogen bonding.</p> <p>The MGO-Wool and also MGO-paper composites produced in a similar way with MGO-Wool, exhibited antimicrobial activities against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The MGO-Wool showed bacteriostatic properties for all composites even after three months of being synthesised. This opens up potential applications for the use of MH and MGO in antimicrobial woollen apparel, medical textiles and bandages.</p> <p>In addition, MGO was incorporated into samples of an acrylic polymer NeoCryl® XK-98 and a polyurethane, Kamthane K-5000, polymer resin, respectively. The interaction of MGO with the respective polymer chains resulted in similar hydrogen bonding between MGO and the polymers. At high MGO concentrations this bonding was confirmed by the presence of a new endothermic peak in the DSC pattern. The addition of MGO also modified the polymer surface and resulted in a more hydrophobic surface with an increased water droplet contact angle of 87.5°. The new polymer compositeswere successfully tested against S. aureus and E. coli microbes and were shown to exhibit antimicrobial properties.</p>


Author(s):  
Zofia Nuc ◽  
◽  
Aldona Dobrzycka-Krahel

Chitin is a naturally occurring polymer. Together with its derivatives such as chitosan, it has a wide spectrum of application possibilities, and many properties not yet exploited. Chitosan possesses many features desirable in an ideal antimicrobial polymer. It shows activity against multidrug-resistant bacterial and fungal strains that pose a challenge to modern medicine. Chitosan also shows activity against certain viruses, such as SARS-CoV-2. It might be used as a drug or a vaccine delivery system, is biodegradable, bioavailable and considered safe for medical use. It is important to continue exploring the potential of chitosan, as well as to investigate its sources. Indeed, many sources of this polymer are still not or have been poorly described. In this paper, we compile the current state of knowledge on the antimicrobial properties of chitosan, list alternative sources of chitin to highlight the potential of these two polymers and encourage further research.


2014 ◽  
Vol 50 (74) ◽  
pp. 10819-10822 ◽  
Author(s):  
Komala Pandurangan ◽  
Jonathan A. Kitchen ◽  
Salvador Blasco ◽  
Francesca Paradisi ◽  
Thorfinnur Gunnlaugsson

The development of a family of twelve aryl pyridyl ureas, their crystallography and the ability of a number of these to form hydrogen bonding supramolecular gels with antimicrobial properties are described.


Author(s):  
Sharma Chander ◽  
Piplani Mona

In this research work, prodrugs of norfloxacin with various benzothiazoles were synthesized and studied for hydrolytic studies at various physiological pH. The results indicated that all of the prodrugs exhibited more and faster hydrolysis mainly in phosphate buffer (pH 7.4) rather than in HCl buffer (pH 1.2). These prodrugs were characterized by FTIR, 1H NMR, mass spectroscopy and physical analysis. The synthesized prodrugs showed better partition coefficient as compared to parent compound, norfloxacin. All of the prodrugs were tested for antimicrobial activity against selected microbial strains. Among the synthesized prodrugs, M1 was found to exhibit significant antibacterial efficacy having MIC 6.25 µg/ml against S. aureus MTCC 96 and prodrug M6 depicted good antibacterial activity (MIC 6.25 µg/ml) against E. coli MTCC 443 when compared with norfloxacin (MIC 10 µg/ml). Prodrugs M2 and M4 showed comparable activity against E. coli MTCC 443 and P. aeruginosa MTCC 1688 respectively to standard drug norfloxacin. The antibacterial activity of prodrug M4 (MIC 25 µg/ml) was found to be better than ciprofloxacin (MIC 50 µg/ml) against S. pyogenus MTCC 442. Moreover, prodrugs M4 and M6 possessed better antifungal activities (MIC 250, 75 µg/ml respectively) against C. albicans MTCC 227 while M2 showed significant potency against A. niger MTCC 282 and A. clavatus MTCC 1323 (MIC 50 µg/ml) compared to standard drug nystatin (MIC 100 µg/ml).


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


Author(s):  
Nimisha Srivastava ◽  
Zeeshan Fatima ◽  
Chanchal Deep Kaur ◽  
Dilshad Ali Rizvi

Background: Dermatitis is a common inflammatory skin disease that is affecting up to 25% of children and 1%-3% of adults worldwide. Paucity of exact cure for dermatitis and untoward side effects of topical immunosuppressive steroids has resulted into a great need for making use of complementary medicine to treat dermatitis. Objective: The present research work involved the development of Berberine chloride dihydrate (BCD) enthused nanovesicles i.e. ethosomes for the management of dermatitis. Method: Ethosomes were prepared by slight modification of cold method using varying concentrations of SPC (1-3%) and ethanol (10-40%) Optimized batch BCD 12 was further added to Carbopol 934P for gel formation. GEL BCD 12 was subjected to “anti-bacterial, dermatitis and skin irritation study. Result: The vesicles were in size range 142.42-398.31 nm while polydispersity index (PDI) ranges from 0.114-1.56 and for zeta potential it was from-18.8 to -39.4. Entrapment efficiency was from 46.05-88.79 %. Confocal laser scanning microscopy showed penetration depth of rhodamine enthused ethosome across rat skin upto 110 µm which was significantly higher than rhodamine solution (10 µm). In the anti-bacterial study, BCD loaded ethosomal gel (EG) showed maximum zone of inhibition of 18.5 mm against E. coli, 14.5 mm against P. aeruginosa and 23.0 mm against S. aureus. In dinitrochlorobenzene (DNCB) induced mice dermatitis model histopathology study showed marked decrease in amount of inflammatory cell nucleus in mice treated with BCD loaded ethosomal gel followed by 56% and 50 % increase in ear swelling and ear mass respectively in morphology study. Conventional marketed formulation showed nominal decrease in epidermal thickness, 66.67 % increase in ear thickness and 63.64 % increase in ear mass. Further Primary irritation index was less than 0.4 indicating negligible irritation in all the groups. Conclusion: It can be concluded that ethosomal gel is not only an efficient carrier for BCD but also proves its potential for the management of dermatitis.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ofosua Adi-Dako ◽  
Kwabena Ofori-Kwakye ◽  
Samuel Frimpong Manso ◽  
Mariam EL Boakye-Gyasi ◽  
Clement Sasu ◽  
...  

The physicochemical and antimicrobial properties of cocoa pod husk (CPH) pectin intended as a versatile pharmaceutical excipient and nutraceutical were studied. Properties investigated include pH, moisture content, ash values, swelling index, viscosity, degree of esterification (DE), flow properties, SEM, FTIR, NMR, and elemental content. Antimicrobial screening and determination of MICs against test microorganisms were undertaken using agar diffusion and broth dilution methods, respectively. CPH pectin had a DE of 26.8% and exhibited good physicochemical properties. Pectin had good microbiological quality and exhibited pseudoplastic, shear thinning behaviour, and high swelling capacity in aqueous media. The DE, FTIR, and NMR results were similar to those of previous studies and supported highly acetylated low methoxy pectin. CPH pectin was found to be a rich source of minerals and has potential as a nutraceutical. Pectin showed dose-dependent moderate activity against gram positive and gram negative microorganisms but weak activity against Listeria spp. and A. niger. The MICs of pectin ranged from 0.5 to 4.0 mg/mL, with the highest activity against E. coli and S. aureus (MIC: 0.5–1.0 mg/mL) and the lowest activity against A. niger (MIC: 2.0–4.0 mg/mL). The study has demonstrated that CPH pectin possesses the requisite properties for use as a nutraceutical and functional pharmaceutical excipient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rokayya Sami ◽  
Abeer Elhakem ◽  
Amina Almushhin ◽  
Mona Alharbi ◽  
Manal Almatrafi ◽  
...  

AbstractWhite button mushrooms are greatly high perishable and can deteriorate within a few days after harvesting due to physicomechanical damage, respiration, microbial growth of the delicate epidermal structure. For that reason, the present research work was applied to evaluate the effect of chitosan combination with nano-coating treatments on physicochemical parameters and microbial populations on button mushrooms at chilling storage. Nano coating with the addition of nisin 1% (CHSSN/M) established the minimum value for weight loss 12.18%, maintained firmness 11.55 N, and color index profile. Moreover, O2% rate of (CHSSN/M) mushrooms was the lowest at 1.78%; while the highest rate was reported for CO2 24.88% compared to the untreated samples (Control/M) on day 12. Both pH and total soluble solid concentrations increased during storage. Results reported that the (CHSS/M) mushroom significantly (P < 0.05) reduced polyphenol oxidase activity (24.31 U mg−1 Protein) compared with (Control/M) mushrooms that increased faster than the treated samples. (CHSSN/M) treatment was the most efficient in the reduction of yeast and mold, aerobic plate microorganisms (5.27–5.10 log CFU/g), respectively. The results established that nano-coating film might delay the aging degree and accompany by marked prolongation of postharvest mushroom freshness.


Drug Research ◽  
2020 ◽  
Author(s):  
Pinki Yadav ◽  
Kashmiri Lal ◽  
Ashwani Kumar

AbstractThe in vitro antimicrobial properties of some chalcones (1a–1c ) and chalcone tethred 1,4-disubstituted 1,2,3-triazoles (2a–2u) towards different microbial strains viz. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans are reported. Compounds 2g and 2u exhibited better potency than the standard Fluconazole with MIC values of 0.0063 µmol/mL and 0.0068 µmol/mL, respectively. Furthermore, molecular docking was performed to investigate the binding modes of two potent compounds 2q and 2g with E. coli topoisomerase II DNA gyrase B and C. albicans lanosterol 14α-demethylase, respectively. Based on these results, a statistically significant quantitative structure activity relationship (QSAR) model was successfully summarized for antibacterial activity against B. subtilis.


Sign in / Sign up

Export Citation Format

Share Document