scholarly journals Synthesis of deoxymannojirimycin using a Ruthenium-catalysed hydrogen borrowing reaction

2021 ◽  
Author(s):  
◽  
Victoria Skinner

<p>1-Deoxymannojirimycin (DMJ) has been investigated as a potential anti-cancer therapy due to its specific inhibition of class I α-mannosidase enzymes, which has been shown to trigger ER stress and the Unfolded Protein Response (UPR) pathway, leading to apoptosis in human hepatocarcinoma cells. Current methods for the synthesis of DMJ consist of multiple steps and often result in poor yields. The objectives of this research project were to develop a scale-up suitable synthesis of deoxymannojirimycin (DMJ), and to assess the feasibility of telescoping key-reactions to reduce the number of unit operations. Synthetic efforts focused on the key conversion of 1 to 2 have previously involved separate oxidation and reduction steps. In our laboratory; attempts to use hydrogen-borrowing chemistry had taken >48hr and not been achieved in high yield. The highlights of this work were that this conversion was ultimately realised in 95% yield in 24hr, and that the final deprotection of (2) could be telescoped into the process removing reaction-workup and chromatographic steps. The ruthenium catalyst used in the hydrogen borrowing reaction was found to be extremely air-sensitive, with reactions taking place in carefully prepared reaction vessels under an atmosphere of dry argon gas. The catalyst was also found to exhibit sensitivities to materials such as metal needles and polymer tubing, preventing sampling and monitoring of the reaction during synthesis. This study demonstrated that a one-pot synthesis is feasible,compressing the final steps in the synthesis of DMJ in excellent yield. The difficulty arises from the sensitive nature of the ruthenium catalyst, and the extreme care required in the preparation of the glassware and reagents used in synthesis. Many aspects of this development require further investigation, including the sampling, monitoring and quality control of each synthetic step.</p>

2021 ◽  
Author(s):  
◽  
Victoria Skinner

<p>1-Deoxymannojirimycin (DMJ) has been investigated as a potential anti-cancer therapy due to its specific inhibition of class I α-mannosidase enzymes, which has been shown to trigger ER stress and the Unfolded Protein Response (UPR) pathway, leading to apoptosis in human hepatocarcinoma cells. Current methods for the synthesis of DMJ consist of multiple steps and often result in poor yields. The objectives of this research project were to develop a scale-up suitable synthesis of deoxymannojirimycin (DMJ), and to assess the feasibility of telescoping key-reactions to reduce the number of unit operations. Synthetic efforts focused on the key conversion of 1 to 2 have previously involved separate oxidation and reduction steps. In our laboratory; attempts to use hydrogen-borrowing chemistry had taken >48hr and not been achieved in high yield. The highlights of this work were that this conversion was ultimately realised in 95% yield in 24hr, and that the final deprotection of (2) could be telescoped into the process removing reaction-workup and chromatographic steps. The ruthenium catalyst used in the hydrogen borrowing reaction was found to be extremely air-sensitive, with reactions taking place in carefully prepared reaction vessels under an atmosphere of dry argon gas. The catalyst was also found to exhibit sensitivities to materials such as metal needles and polymer tubing, preventing sampling and monitoring of the reaction during synthesis. This study demonstrated that a one-pot synthesis is feasible,compressing the final steps in the synthesis of DMJ in excellent yield. The difficulty arises from the sensitive nature of the ruthenium catalyst, and the extreme care required in the preparation of the glassware and reagents used in synthesis. Many aspects of this development require further investigation, including the sampling, monitoring and quality control of each synthetic step.</p>


2014 ◽  
Author(s):  
Mohammed A Alfattah ◽  
Paul Anthony McGettigan ◽  
John Arthur Browne ◽  
Khalid M Alkhodair ◽  
Katarzyna Pluta ◽  
...  

2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


Sign in / Sign up

Export Citation Format

Share Document