Partial cable-stayed bridge in the application of heavy haul railway

Author(s):  
Guilin Li ◽  
Di Shi ◽  
Xiaojiang Zhang

<p>Taking the partial cable-stayed bridge with main span of 248 meters which used on the railway coal corridor from western Inner Mongolia to central China as an example. the adaptability and particularity of partial cable-stayed bridge in the span range are analyzed based on structural static analysis theory. Pylon and girder rigid fixity, pier and beam separation system is applied, H- shaped bridge towers, the double cell concrete box girder and the monofilament epoxy coating prestress strand is used in this bridge. The results indicate that stay-cables contribution to the overall stiffness value of 33%. In order to improve the structure performance of the controlling area such as cross section, bridge tower adopt the high tower type system, depth-span ratio is determined to be 1/4.35, C60 high performance concrete is applied. The main pier bearing adopts double 190000 kN large tonnage steel spherical bearings because of the heavy dead loads and the heavy live loads, using the high-performance materials and Partial sealing technique to ensure the bearing durability, stability and long service life. The structure of the bridge meets the requirements of heavy haul railway according to the analysis.</p>

2020 ◽  
Vol 23 (16) ◽  
pp. 3373-3384
Author(s):  
Lei Wang ◽  
Xiaochao Su ◽  
Yafei Ma ◽  
Ming Deng ◽  
Jianren Zhang ◽  
...  

Fatigue cracking induced by vehicle load is a prevalent problem in orthotropic steel decks. In addition, pavement debonding in steel bridge decks is another familiar issue resulting from low slip resistance in the faying surface between the steel and asphalt concrete. The present study proposed a strengthening method that uses ultra-high performance concrete to stiffen a repeatedly maintained cable-stayed bridge in order to help address these two problems. The existing issues of the real bridge and the corresponding causes were investigated. Following this, an ultra-high performance concrete paving system was designed to improve the stiffness of the orthotropic steel decks. For this paving system, a 45-mm ultra-high performance concrete layer was connected to the deck by welded shear studs. The local stresses at the typical vulnerable fatigue cracking points were determined by means of a finite element model and of a field loading test to evaluate the strengthening effect. The results showed that this strengthening method can prevent the propagation of fatigue cracks. The local stresses of the U-ribs and diaphragms were reduced by 45.4% and 40.0%, respectively. The repaired bridge has sufficient resistance against fatigue cracking based on the in situ observations.


2011 ◽  
Vol 250-253 ◽  
pp. 761-764 ◽  
Author(s):  
Zan Zhi Wang ◽  
Franciscus Xaverius Supartono

The obstacles met during the production and construction of High Strength Concrete (HSC) and High Performance Concrete (HPC) are analyzed, then the poly-carboxylate based admixture is studied in detail. After that, presents the trend of using Self Compacting Concrete (SCC) to improve the performance of concrete structures, i.e. its durability and reliability, because its highly flowing nature makes it suitable for placing concrete in difficult conditions and sections, especially with crowded steel reinforcement. Utilization of SCC can also reduce the time required for placing large sections in concrete structures, e.g. in the basement or substructure’s concrete pouring. SCC may also minimize the noises on the construction site that are induced by concrete vibrators. Accompanying the presentation of the performance of SCC, its applications in the recently completed Grand Wisata Cable Stayed Bridge designed by the Authors are also introduced.


2019 ◽  
Vol 14 (4) ◽  
pp. 543-567
Author(s):  
Hiram Arellano ◽  
Roberto Gomez ◽  
Dante Tolentino

The influence of the stiffness of piers, pylons and deck in the behaviour of multi-span cable-stayed bridges under alternate live loads is analysed. The variation of these parameters is discussed considering both a harp cable system and a fan cable system. Different types of connections between pier-pylon and deck are also considered. Based on the behaviour of a three-span cable-stayed bridge, the variation of pier-pylon stiffness and deck stiffness was analysed. A similar state of stress and deflections was obtained for both a three-span and a multi-span cable-stayed bridge. The study shows that the harp type system presents advantages compared to fan type in terms of its behaviour under alternate live loads considering the same values of deck stiffness and pier-pylon stiffness. It is demonstrated that the resistant mechanism of multi-span cable- stayed bridges is provided by the pier-pylon element.


PCI Journal ◽  
2001 ◽  
Vol 46 (1) ◽  
pp. 79-81
Author(s):  
John J. Roller ◽  
Robert N. Bruce ◽  
Henry G. Russell

Sign in / Sign up

Export Citation Format

Share Document