scholarly journals A cross-border outbreak of Salmonella Bareilly cases confirmed by whole genome sequencing, Czech Republic and Slovakia, 2017 to 2018

2021 ◽  
Vol 26 (14) ◽  
Author(s):  
Klára Labská ◽  
Michaela Špačková ◽  
Ondřej Daniel ◽  
Josef Včelák ◽  
Veronika Vlasáková ◽  
...  

In August 2017, an increased incidence of Salmonella Bareilly was detected in the Czech Republic. An investigation was conducted with Slovakia to confirm the outbreak and identify the source. Probable outbreak cases were defined as cases with laboratory-confirmed S. Bareilly reported in either of the national surveillance systems, and/or the Czech and Slovak National Reference Laboratory databases from July 2017. Confirmed cases had the pulsed-field gel electrophoresis (PFGE) outbreak pulsotype or up to 5 alleles difference from outbreak cluster members by core genome multilocus sequence typing (cgMLST). PFGE and whole genome sequencing were used for isolate comparison. The same trawling questionnaire was used in both countries. By the end of October 2018, 325 cases were identified. Among 88 human S. Bareilly isolates analysed by PFGE, 82 (93%) shared an identical pulsotype; cgMLST of 17 S. Bareilly human isolates showed 1–2 allele difference. The trawling questionnaire excluded consumption of unusual or imported foods. In September 2018, an isolate closely related to the outbreak isolates was identified in a powdered egg product. A spray dryer was recognised as the contamination source and the production plant was closed. Using molecular typing methods, we detected a diffuse cross-border outbreak caused by S. Bareilly.

2015 ◽  
Vol 53 (4) ◽  
pp. 1137-1143 ◽  
Author(s):  
Antonina A. Votintseva ◽  
Louise J. Pankhurst ◽  
Luke W. Anson ◽  
Marcus R. Morgan ◽  
Deborah Gascoyne-Binzi ◽  
...  

We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/μl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) asMycobacterium tuberculosiswere successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools.


2019 ◽  
Vol 24 (4) ◽  
Author(s):  
Estefanía Abascal ◽  
Laura Pérez-Lago ◽  
Miguel Martínez-Lirola ◽  
Álvaro Chiner-Oms ◽  
Marta Herranz ◽  
...  

Background The analysis of transmission of tuberculosis (TB) is challenging in areas with a large migrant population. Standard genotyping may fail to differentiate transmission within the host country from new importations, which is key from an epidemiological perspective. Aim To propose a new strategy to simplify and optimise cross-border surveillance of tuberculosis and to distinguish between recent transmission in the host country and new importations Methods We selected 10 clusters, defined by 24-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR), from a population in Spain rich in migrants from eastern Europe, north Africa and west Africa and reanalysed 66 isolates by whole-genome sequencing (WGS). A multiplex-allele-specific PCR was designed to target strain-specific marker single nucleotide polymorphisms (SNPs), identified from WGS data, to optimise the surveillance of the most complex cluster. Results In five of 10 clusters not all isolates showed the short genetic distances expected for recent transmission and revealed a higher number of SNPs, thus suggesting independent importations of prevalent strains in the country of origin. In the most complex cluster, rich in Moroccan cases, a multiplex allele-specific oligonucleotide-PCR (ASO-PCR) targeting the marker SNPs for the transmission subcluster enabled us to prospectively identify new secondary cases. The ASO-PCR-based strategy was transferred and applied in Morocco, demonstrating that the strain was prevalent in the country. Conclusion We provide a new model for optimising the analysis of cross-border surveillance of TB transmission in the scenario of global migration.


2016 ◽  
Author(s):  
Antonina A. Votintseva ◽  
Phelim Bradley ◽  
Louise Pankhurst ◽  
Carlos del Ojo Elias ◽  
Matthew Loose ◽  
...  

AbstractRoutine full characterization of Mycobacterium tuberculosis (TB) is culture-based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near point of care.We demonstrate a low-cost DNA extraction method for TB WGS direct from patient samples. We initially evaluated the method using the Illumina MiSeq sequencer (40 smear-positive respiratory samples, obtained after routine clinical testing, and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction was obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. Using an Illumina MiSeq/MiniSeq the workflow from patient sample to results can be completed in 44/16 hours at a cost of £96/£198 per sample.We then employed a non-specific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis BCG strain (BCG), and to combined culture-negative sputum DNA and BCG DNA. For the latest flowcell, the estimated turnaround time from patient to identification of BCG was 6 hours, with full susceptibility and surveillance results 2 hours later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of the MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis in direct samples.


2017 ◽  
Vol 22 (2) ◽  
Author(s):  
Lena Fiebig ◽  
Thomas A Kohl ◽  
Odette Popovici ◽  
Margarita Mühlenfeld ◽  
Alexander Indra ◽  
...  

Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders.


2020 ◽  
Vol 57 (1) ◽  
pp. 2002272
Author(s):  
Elisa Tagliani ◽  
Richard Anthony ◽  
Thomas A. Kohl ◽  
Albert de Neeling ◽  
Vlad Nikolayevskyy ◽  
...  

Whole genome sequencing (WGS) can be used for molecular typing and characterisation of Mycobacterium tuberculosis complex (MTBC) strains. We evaluated the systematic use of a WGS-based approach for MTBC surveillance involving all European Union/European Economic Area (EU/EEA) countries and highlight the challenges and lessons learnt to be considered for the future development of a WGS-based surveillance system.WGS and epidemiological data of patients with rifampicin-resistant (RR) and multidrug-resistant (MDR) tuberculosis (TB) were collected from EU/EEA countries between January 2017 and December 2019. WGS-based genetic relatedness analysis was performed using a standardised approach including both core genome multilocus sequence typing (cgMLST) and single nucleotide polymorphism (SNP)-based calculation of distances on all WGS data that fulfilled minimum quality criteria to ensure data comparability.A total of 2218 RR/MDR-MTBC isolates were collected from 25 countries. Among these, 56 cross-border clusters with increased likelihood of recent transmission (≤5 SNPs distance) comprising 316 RR/MDR-MTBC isolates were identified. The cross-border clusters included between two and 30 resistant isolates from two to six countries, demonstrating different RR/MDR-TB transmission patterns in Western and Eastern EU countries.This pilot study shows that a WGS-based surveillance system is not only feasible but can efficiently elucidate the dynamics of in-country and cross-border RR/MDR-TB transmission across EU/EEA countries. Lessons learnt from this study highlight that the establishment of an EU/EEA centralised WGS-based surveillance system for TB will require strengthening of national integrated systems performing prospective WGS surveillance and the development of clear procedures to facilitate international collaboration for the investigation of cross-border clusters.


2017 ◽  
Vol 55 (5) ◽  
pp. 1285-1298 ◽  
Author(s):  
Antonina A. Votintseva ◽  
Phelim Bradley ◽  
Louise Pankhurst ◽  
Carlos del Ojo Elias ◽  
Matthew Loose ◽  
...  

ABSTRACT Routine full characterization of Mycobacterium tuberculosis is culture based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near the point of care. We demonstrate a low-cost method of DNA extraction directly from patient samples for M. tuberculosis WGS. We initially evaluated the method by using the Illumina MiSeq sequencer (40 smear-positive respiratory samples obtained after routine clinical testing and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction were obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. With Illumina MiSeq/MiniSeq, the workflow from patient sample to results can be completed in 44/16 h at a reagent cost of £96/£198 per sample. We then employed a nonspecific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis strain BCG DNA and to combined culture-negative sputum DNA and BCG DNA. For flow cell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 h, with full susceptibility results 5 h later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis DNA in direct samples.


2015 ◽  
Vol 36 (7) ◽  
pp. 777-785 ◽  
Author(s):  
Taj Azarian ◽  
Robert L. Cook ◽  
Judith A. Johnson ◽  
Nilmarie Guzman ◽  
Yvette S. McCarter ◽  
...  

BACKGROUNDInfants in the neonatal intensive care unit (NICU) are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) acquisition. Outbreaks may be difficult to identify due in part to limitations in current molecular genotyping available in clinical practice. Comparison of genome-wide single nucleotide polymorphisms (SNPs) may identify epidemiologically distinct isolates among a population sample that appears homogenous when evaluated using conventional typing methods.OBJECTIVETo investigate a putative MRSA outbreak in a NICU utilizing whole-genome sequencing and phylogenetic analysis to identify recent transmission events.DESIGNClinical and surveillance specimens collected during clinical care and outbreak investigation.PATIENTSA total of 17 neonates hospitalized in a 43-bed level III NICU in northeastern Florida from December 2010 to October 2011 were included in this study.METHODSWe assessed epidemiological data in conjunction with 4 typing methods: antibiograms, PFGE, spa types, and phylogenetic analysis of genome-wide SNPs.RESULTSAmong the 17 type USA300 isolates, 4 different spa types were identified using pulsed-field gel electrophoresis. Phylogenetic analysis identified 5 infants as belonging to 2 clusters of epidemiologically linked cases and excluded 10 unlinked cases from putative transmission events. The availability of these results during the initial investigation would have improved infection control interventions.CONCLUSIONWhole-genome sequencing and phylogenetic analysis are invaluable tools for epidemic investigation; they identify transmission events and exclude cases mistakenly implicated by traditional typing methods. When routinely applied to surveillance and investigation in the clinical setting, this approach may provide actionable intelligence for measured, appropriate, and effective interventions.Infect. Control Hosp. Epidemiol. 2015;36(7):777–785


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Federica Palma ◽  
Frédérique Pasquali ◽  
Alex Lucchi ◽  
Alessandra De Cesare ◽  
Gerardo Manfreda

Listeria monocytogenes is a food-borne pathogen able to survive and grow in different environments including food processing plants where it can persist for month or years. In the present study the discriminatory power of Whole Genome Sequencing (WGS)-based analysis (cgMLST) was compared to that of molecular typing methods on 34 L. monocytogenes isolates collected over one year in the same rabbit meat processing plant and belonging to three genotypes (ST14, ST121, ST224). Each genotype included isolates indistinguishable by standard molecular typing methods. The virulence potential of all isolates was assessed by Multi Virulence-Locus Sequence Typing (MVLST) and the investigation of a representative database of virulence determinant genes. The whole genome of each isolate was sequenced on a MiSeq platform. The cgMLST, MVLST, and in silico identification of virulence genes were performed using publicly available tools. Draft genomes included a number of contigs ranging from 13 to 28 and N50 ranging from 456298 to 580604. The coverage ranged from 41 to 187X. The cgMLST showed a significantly superior discriminatory power only in comparison to ribotyping, nevertheless it allows the detection of two singletons belonging to ST14 that were not observed by other molecular methods. All ST14 isolates belonged to VT107, which 7-loci concatenated sequence differs for only 4 nucleotides to VT1 (Epidemic clone III). Analysis of virulence genes showed the presence of a fulllength inlA version in all ST14 isolates and of a mutated version including a premature stop codon (PMSC) associated to attenuated virulence in all ST121 isolates.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Laura Uelze ◽  
Josephine Grützke ◽  
Maria Borowiak ◽  
Jens Andre Hammerl ◽  
Katharina Juraschek ◽  
...  

2018 ◽  
Author(s):  
Avika Dixit ◽  
Luca Freschi ◽  
Roger Vargas ◽  
Roger Calderon ◽  
James Sacchettini ◽  
...  

AbstractBackgroundWhole genome sequencing (WGS) can elucidate Mycobacterium tuberculosis (Mtb) transmission patterns but more data is needed to guide its use in high-burden settings. In a household-based transmissibility study of 4,000 TB patients in Lima, Peru, we identified a large MIRU-VNTR Mtb cluster with a range of resistance phenotypes and studied host and bacterial factors contributing to its spread.MethodsWGS was performed on 61 of 148 isolates in the cluster. We compared transmission link inference using epidemiological or genomic data with and without the inclusion of controversial variants, and estimated the dates of emergence of the cluster and antimicrobial drug resistance acquisition events by generating a time-calibrated phylogeny. We validated our findings in genomic data from an outbreak of 325 TB cases in London. Using a larger set of 12,032 public Mtb genomes, we determined bacterial factors characterizing this cluster and under positive selection in other Mtb lineages.FindingsFour isolates were distantly related and the remaining 57 isolates diverged ca. 1968 (95% HPD: 1945-1985). Isoniazid resistance arose once, whereas rifampicin resistance emerged subsequently at least three times. Amplification of other drug resistance occurred as recently as within the last year of sampling. High quality PE/PPE variants and indels added information for transmission inference. We identified five cluster-defining SNPs, including esxV S23L to be potentially contributing to transmissibility.InterpretationClusters defined by MIRU-VNTR typing, could be circulating for decades in a high-burden setting. WGS allows for an improved understanding of transmission, as well as bacterial resistance and fitness factors.FundingThe study was funded by the National Institutes of Health (Peru Epi study U19-AI076217 and K01-ES026835 to MRF). The funding sources had no role in any aspect of the study, manuscript or decision to submit it for publication.Research in contextEvidence before this studyUse of whole genome sequencing (WGS) to study tuberculosis (TB) transmission has proven to have higher resolution that traditional typing methods in low-burden settings. The implications of its use in high-burden settings are not well understood.Added value of this studyUsing WGS, we found that TB clusters defined by traditional typing methods may be circulating for several decades. Genomic regions typically excluded from WGS analysis contain large amount of genetic variation that may affect interpretation of transmission events. We also identified five bacterial mutations that may contribute to transmission fitness.Implications of all the available evidenceAdded value of WGS for understanding TB transmission may be even higher in high-burden vs. low-burden settings. Methods integrating variants found in polymorphic sites and insertions and deletions are likely to have higher resolution. Several host and bacterial factors may be responsible for higher transmissibility that can be targets of intervention to interrupt TB transmission in communities.


Sign in / Sign up

Export Citation Format

Share Document