scholarly journals Implementasi Sensor Inertial Meansurenment Unit (IMU) untuk Monitoring Perilaku Roket

AVITEC ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Mudarris Mudarris ◽  
Satria Gunawan Zain

This paper examines the Implementation of the Inertial Measurement Unit (IMU) Sensor for Monitoring Rocket Attitude. The monitored rocket attitude data is in the form of vibration which is generated by the payload during the functional test and flight speed, acceleration and direction flight test. The rocket payload device is mounted in the rocket compartment for the function of measuring rocket behavior. Data is sent to ground stations via telemetry devices use baud rate of 57600. Based on the results of G-Shock, G-Force and Vibration testing shows that the payload can work well. In accordance with the results of reading the data on the Graphical user Interface (GUI) can be displayed and shows the rocket payload works well. This rocket payload can transmit data remotely. 

2018 ◽  
Vol 10 (6) ◽  
pp. 168781401876948 ◽  
Author(s):  
Sergio Valdivia ◽  
Robin Blanco ◽  
Alvaro Uribe-Quevedo ◽  
Lina Penuela ◽  
David Rojas ◽  
...  

The spinal column requires special care through exercises focused on muscle strengthening, flexibility, and mobility to minimize the risk of developing musculoskeletal disorders that may affect the quality of life. Guidelines for spinal column exercises are commonly presented through printed and multimedia guides accompanied with demonstrations performed by a physiotherapist, occupational health expert, or physical fitness trainer. However, existing guides lack interaction and oral explanations may not always be clear to the user, leading to decreased engagement and motivation to start, continue, or complete an exercise program. In this article, we present two interactive and engaging posture-tracking user interfaces intended to promote proper spinal column exercise form. One user interface employs a wooden manikin with an integrated inertial measurement unit to provide a tangible user interaction. The other user interface presents a mobile application that provides instructions and explanations about the exercises. Both user interfaces allow recording key postures during the exercise for reference and feedback. We compared the usability of the interfaces through a series of flexion and extension exercises, monitored with an inertial measuring unit worn around the torso, and a Microsoft Kinect V2 vision-based sensor. Although no significant differences between the manikin user interface and the mobile application were found in terms of usability, the inertial measurement unit provided more accurate and reliable data in comparison to the Microsoft Kinect V2 as a result of body occlusions in front of the sensor caused during the torso flexion. Although both user interfaces provide different experiences and performed well, we believe that a combination of both will improve user engagement and motivation, while providing a more accurate motion profile.


2014 ◽  
Vol 2 (1) ◽  
pp. 40-55 ◽  
Author(s):  
Angel Flores-Abad ◽  
Pu Xie ◽  
Gabriela Martinez-Arredondo ◽  
Ou Ma

Purpose – Calibration and 6-DOF test of a unique inertial measurement unit (IMU) using a Quadrotor aircraft. The purpose of this paper is to discuss the above issue. Design/methodology/approach – An IMU with the special capability of measuring the angular acceleration was developed and tested. A Quadrotor aircraft is used as 6-DOF test platform. Kinematics modeling of the Quadrotor was used in the determination of the Euler angles, while Dynamics modeling aided in the design the closed loop controller. For safety, the flight test was performed on a 6-DOF constrained reduced-gravity test stand. Findings – The developed IMU is suitable for measuring states and its time derivatives of mini UAVs. Not only that but also a simple control algorithm can be integrated in the same processing unit (a 32 microcontroller in this case). Originality/value – The tested IMU as well as the safety constrained test techniques are unique.


Author(s):  
Fahad Kamran ◽  
Kathryn Harrold ◽  
Jonathan Zwier ◽  
Wendy Carender ◽  
Tian Bao ◽  
...  

Abstract Background Recently, machine learning techniques have been applied to data collected from inertial measurement units to automatically assess balance, but rely on hand-engineered features. We explore the utility of machine learning to automatically extract important features from inertial measurement unit data for balance assessment. Findings Ten participants with balance concerns performed multiple balance exercises in a laboratory setting while wearing an inertial measurement unit on their lower back. Physical therapists watched video recordings of participants performing the exercises and rated balance on a 5-point scale. We trained machine learning models using different representations of the unprocessed inertial measurement unit data to estimate physical therapist ratings. On a held-out test set, we compared these learned models to one another, to participants’ self-assessments of balance, and to models trained using hand-engineered features. Utilizing the unprocessed kinematic data from the inertial measurement unit provided significant improvements over both self-assessments and models using hand-engineered features (AUROC of 0.806 vs. 0.768, 0.665). Conclusions Unprocessed data from an inertial measurement unit used as input to a machine learning model produced accurate estimates of balance performance. The ability to learn from unprocessed data presents a potentially generalizable approach for assessing balance without the need for labor-intensive feature engineering, while maintaining comparable model performance.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4767
Author(s):  
Karla Miriam Reyes Leiva ◽  
Milagros Jaén-Vargas ◽  
Benito Codina ◽  
José Javier Serrano Olmedo

A diverse array of assistive technologies have been developed to help Visually Impaired People (VIP) face many basic daily autonomy challenges. Inertial measurement unit sensors, on the other hand, have been used for navigation, guidance, and localization but especially for full body motion tracking due to their low cost and miniaturization, which have allowed the estimation of kinematic parameters and biomechanical analysis for different field of applications. The aim of this work was to present a comprehensive approach of assistive technologies for VIP that include inertial sensors as input, producing results on the comprehension of technical characteristics of the inertial sensors, the methodologies applied, and their specific role in each developed system. The results show that there are just a few inertial sensor-based systems. However, these sensors provide essential information when combined with optical sensors and radio signals for navigation and special application fields. The discussion includes new avenues of research, missing elements, and usability analysis, since a limitation evidenced in the selected articles is the lack of user-centered designs. Finally, regarding application fields, it has been highlighted that a gap exists in the literature regarding aids for rehabilitation and biomechanical analysis of VIP. Most of the findings are focused on navigation and obstacle detection, and this should be considered for future applications.


Sign in / Sign up

Export Citation Format

Share Document