scholarly journals Model Implementasi Bioenginering Sebagai Upaya Mitigasi Longsor

2021 ◽  
Vol 4 (2) ◽  
pp. 71-80
Author(s):  
Hasmana Soewandita

Landslide is one of the high frequency disasters that occur in Indonesia. The incident recurs every year with a different location. The fact that landslide hazards are used intensively for agricultural cultivation due to economic considerations. One of the efforts to mitigate this disaster is the Bioenginering implementation approach. Bioenginering activity is the application of landslide hazard area management by managing plants / vegetation. The purpose of this research is to implement a vegetative technology implementation model as an effort to mitigate landslides. Bioenginering implementation is designed with a combination of ecological and socio-economic approaches. The results of this combination are consulted with the affected community and consider various vegetation alternatives. The selected vegetation not only has an ecological function but also an economic function. With these considerations, a vegetation design is obtained with a combination of upper strata (trees), middle and lower strata. For the upper strata it is recommended to plant Petai (Parkia speciosa) and Durian (Durio zibenthinus), for the middle strata, namely Coffee (Coffea arabica) and lower strata plants are pineapple (Ananas commocus). The combination of plants such as the implementation at the field level will be accepted by the farming community, because every certain period of time the farmers will be able to harvest their crops without having to remove the plants or cut down the plants. Maintaining the level of land cover and land use has implications for maintaining the stability of soil moisture conditions which in turn can reduce the threat of landslides in landslide hazard areas.

2012 ◽  
Vol 260-261 ◽  
pp. 907-911
Author(s):  
Yu Chen ◽  
Hui Yun Duan ◽  
Cheng Tao Zhou

The slope deformation and instability caused by rainfall is the most common geological hazard in the highway slope landslide hazards. This paper used the finite element method to analyze the stability of slop in a variety of water-saturated conditions based on the strength reduction method, and to get the mechanism of rainfall weakening the strength of landslide. The results shows that the slope landslide in the fully saturated state would be instability when the surface was muddy geotechnical (thickness about 5 m), but it could remain stable when the saturated rate was under 80%. Under the action of rainfall, the maximum shear stress of potential slip plane in this kind of slopes was in the landslide’s lower edge which has obvious stress concentraten. Therefore, slope control measures should be strengthened to prevent the occurrence of the landslide hazard in the lot of long rainy season.


2005 ◽  
Vol 29 (4) ◽  
pp. 548-567 ◽  
Author(s):  
Wang Huabin ◽  
Liu Gangjun ◽  
Xu Weiya ◽  
Wang Gonghui

In recent years, landslide hazard assessment has played an important role in developing land utilization regulations aimed at minimizing the loss of lives and damage to property. A variety of approaches has been used in landslide assessment and these can be classified into qualitative factor overlay, statistical models, geotechnical process models, etc. However, there is little work on the satisfactory integration of these models with geographic information systems (GIS) to support slope management and landslide hazard mitigation. This paper deals with several aspects of landslide hazard assessment by presenting a focused review of GIS-based landslide hazard assessment: it starts with a framework for GIS-based assessment of landslide hazard; continues with a critical review of the state of the art in using GIS and digital elevation models (DEM) for mapping and modelling landslide hazards; and concludes with a description of an integrated system for effective landslide hazard assessment and zonation incorporating artificial intelligence and data mining technology in a GIS-based framework of knowledge discovery.


2020 ◽  
Vol 4 (2) ◽  
pp. 160-171
Author(s):  
Listyo Yudha Irawan ◽  

Poncokusumo and Wajak regions are one of the Districts in Malang Regency. Poncokusumo and Wajak have varied land uses, geology and morphogenesis. This physiographic condition has an effect on the increasing threat of landslides. This study aims to determine the level of landslide hazard and its distribution. The method used in the identification of landslide hazards is the scoring method which refers to the 2012 BNPB Head Regulation, Indonesian National Standard number 13-7124-2005, the Indirect Method, and the Indonesian Disaster Risk (RBI) BNPB 2016. The results showed that the geological conditions of the study area were composed of volcanic materials such as lava and lava deposits. This material is loose and unstable. Based on the slope classification, this area consists of flat areas with a slope of 0-8% to steep areas with a slope of> 40%. Based on the morphological conditions, it can be seen that this area is an area prone to landslides. Landslide hazard levels in parts of Poncokusumo and Wajak are low and medium. Low landslide hazard levels are dominated by forest land use. The level of danger of a lonsor is being dominated by the use of residential land. The area with a low hazard level is 860.8 Ha and the area with a moderate hazard level is 365.1 Ha. Keywords: landslide, hazard, GIS


2018 ◽  
Author(s):  
David G. Milledge ◽  
Alexander L. Densmore ◽  
Dino Bellugi ◽  
Nick J. Rosser ◽  
Jack Watt ◽  
...  

Abstract. Landslides constitute a hazard to life and infrastructure, and their risk is mitigated primarily by reducing exposure. This requires information on landslide hazard at a scale that can enable informed decisions about how to respond to that hazard. Such information is often unavailable to, or not easily interpreted by, those who might need it most (e.g., householders, local government, and NGOs). To address this shortcoming, we develop simple rules to identify landslide hazard that are understandable, communicable, and memorable, and that require no prior knowledge, skills, or equipment to evaluate. We examine rules based on two common metrics of landslide hazard, local slope and upslope contributing area as a proxy for hillslope location, and we introduce and test two new metrics: the maximum angle to the skyline and the hazard area, defined as the upslope area with slope > 39° that reaches a location without passing over a slope of  10°) channels with many steep (> 39°) areas that are upslope. Because local slope alone is a skilful predictor of landslide hazard, we can formulate a third rule as minimise local slope, especially on steep slopes and even at the expense of increasing upslope contributing area, but not at the expense of increasing skyline angle or hazard area. Upslope contributing area, by contrast, has a weaker and more complex relationship to hazard than the other predictors. Our simple rules complement, but do not replace, detailed site-specific investigation; they can be used for initial estimation of landslide hazard or guide decision-making in the absence of any other information.


Author(s):  
C. Kakonkwe ◽  
D. E. Rwabuhungu ◽  
M. Biryabarema

A series of ArcGIS-generated maps were applied in analysing the potential for flooding and landslide hazards within the Lake Kivu drainage basin. This study was carried out using digital elevation data of the basin. The Kivu drainage basin encompasses an area of 7,382 km2. Sediment and water supply to Lake Kivu originate mostly from its eastern hinterland. The distribution of land sliding potentiality in the drainage basin shows that the northern and the southern portions of the basin are the ones with relatively low risk of land sliding, whereas the rift shoulders are most prone to land sliding. Mass wasting on slopes has the potential to grade downstream into debris and mudflows, promoting in turn further erosion and flooding. Keywords: drainage, Kivu, Africa, flooding, landslide, hazard


2002 ◽  
Vol 2 (1/2) ◽  
pp. 57-72 ◽  
Author(s):  
M. Cardinali ◽  
P. Reichenbach ◽  
F. Guzzetti ◽  
F. Ardizzone ◽  
G. Antonini ◽  
...  

Abstract. We present a geomorphological method to evaluate landslide hazard and risk. The method is based on the recognition of existing and past landslides, on the scrutiny of the local geological and morphological setting, and on the study of site-specific and historical information on past landslide events. For each study area a multi-temporal landslide inventory map has been prepared through the interpretation of various sets of stereoscopic aerial photographs taken over the period 1941–1999, field mapping carried out in the years 2000 and 2001, and the critical review of site-specific investigations completed to solve local instability problems. The multi-temporal landslide map portrays the distribution of the existing and past landslides and their observed changes over a period of about 60 years. Changes in the distribution and pattern of landslides allow one to infer the possible evolution of slopes, the most probable type of failures, and their expected frequency of occurrence and intensity. This information is used to evaluate landslide hazard, and to estimate the associated risk. The methodology is not straightforward and requires experienced geomorphologists, trained in the recognition and analysis of slope processes. Levels of landslide hazard and risk are expressed using an index that conveys, in a simple and compact format, information on the landslide frequency, the landslide intensity, and the likely damage caused by the expected failure. The methodology was tested in 79 towns, villages, and individual dwellings in the Umbria Region of central Italy.


2019 ◽  
Author(s):  
Ronda Strauch ◽  
Erkan Istanbulluoglu ◽  
Jon Riedel

Abstract. We developed a new approach for mapping landslide hazard by combining probabilities of landslide impact derived from a data-driven statistical approach and process-based model of shallow landsliding. Our statistical approach integrates the influence of seven site attributes on observed landslides using a frequency ratio method. Influential attributes and resulting susceptibility maps depend on the observations of landslides considered: all types of landslides, debris avalanches only, or source areas of debris avalanches. These observational datasets reflect the capture of different landslide processes or components, which relate to different landslide-inducing factors. Slopes greater than 35° are more frequently associated with landslide initiation, while higher landslide hazards at gentler slopes (< 30°) reflect depositional processes from observations of all landslide types or debris avalanches. Source areas are associated with mid to high elevations (1,400 to 1,800 m), where they are linked to ecosystem transition (e.g., forest to barren), while all landslides types and debris avalanches show increasing frequency in lower elevations (< 1,200 m). Slope is a key attribute in the initiation of landslides, while lithology is mainly linked to transport and depositional processes. East (west) aspect is a positive (negative) landslide-influencing factor, likely due to differences in forest cover and associated root cohesion, and evapotranspiration. The empirical model probability derived from debris avalanche source area is combined probabilistically with a previously developed processed-based probabilistic model to produce an integrated probability of landslide hazard for initiation that includes mechanisms not captured by the infinite slope stability model. We apply our approach in North Cascades National Park Complex in Washington, USA, to provide multiple landslide hazard maps that land managers can use for planning and decision making, as well as educating the public about hazards from landslides in this remote high-relief terrain.


Author(s):  
Sung Eun Cha ◽  
Chul Hee Lim ◽  
Ji Won Kim ◽  
Moon Il Kim ◽  
Chol Ho Song ◽  
...  

2019 ◽  
Vol 31 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Jian Hu ◽  
Haiwan Zhu ◽  
Yimin Mao ◽  
Canlong Zhang ◽  
Tian Liang ◽  
...  

Landslide hazard prediction is a difficult, time-consuming process when traditional methods are used. This paper presents a method that uses machine learning to predict landslide hazard levels automatically. Due to difficulties in obtaining and effectively processing rainfall in landslide hazard prediction, and to the existing limitation in dealing with large-scale data sets in the M-chameleon algorithm, a new method based on an uncertain DM-chameleon algorithm (developed M-chameleon) is proposed to assess the landslide susceptibility model. First, this method designs a new two-phase clustering algorithm based on M-chameleon, which effectively processes large-scale data sets. Second, the new E-H distance formula is designed by combining the Euclidean and Hausdorff distances, and this enables the new method to manage uncertain data effectively. The uncertain data model is presented at the same time to effectively quantify triggering factors. Finally, the model for predicting landslide hazards is constructed and verified using the data from the Baota district of the city of Yan’an, China. The experimental results show that the uncertain DM-chameleon algorithm of machine learning can effectively improve the accuracy of landslide prediction and has high feasibility. Furthermore, the relationships between hazard factors and landslide hazard levels can be extracted based on clustering results.


1972 ◽  
Vol 45 (1) ◽  
pp. 49-59 ◽  
Author(s):  
R. A. Gregg

Abstract The resinous impregnant in glass yarn influences the stability of the yarn. Some glass yarns suffer tensile degradation on storage and/or vulcanization at high humidities. One type of glass yarn was exposed in atmospheres over the range 0–88% relative humidity at 73° F for times up to 400 days. Tensile losses of 30% or more can occur on storage of the glass yarn at the humidities in the upper end of the range. This loss is permanent as even vigorous drying at high temperatures will not restore the tensile. Under dry conditions the yarn has excellent storage stability. Furthermore, after vulcanization even into thin composites, the glass yarn shows only a small permanent loss of tensile under moisture conditions that would seriously degrade the yarn in a package. An increased degree of vulcanization of the rubber slightly increases the tensile strength of the composite. In addition to its permanent degradative action in long-term exposure, water has a phenomenological effect of reducing glass composite tensile by its presence. A tensile sensitivity to moisture index is suggested and used to characterize the glass yarn. This tensile loss is recoverable by drying but some of the water is bound very tightly. Thin composites do not give up all of the water in 150 days over Drierite® as shown by the fact that more vigorous high temperature drying leads to a further increase in tensile strength. Tensile strength at 300° F is about 25% lower than at 73° F at any moisture content. Higher moisture contents lead to lower absolute tensiles. Tensile values are detailed for conditions that might exist during cure or in a product running at a high temperature. The high temperature incurred tensile reductions from a standard tensile are significant and should be considered in designing products. The detailed observations apply only to this particular glass yarn but the principles and methods are applicable in the evaluation or development of any glass yarn.


Sign in / Sign up

Export Citation Format

Share Document