STUDI PENENTUAN KOMPOSISI OPTIMUM CAMPURAN BAHAN BAKAR BIODIESEL–PETRODIESEL

2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Soni S. Wirawan dkk

Biodiesel is a viable substitute for petroleum-based diesel fuel. Its advantages are improved lubricity, higher cetane number and cleaner emission. Biodiesel and its blends with petroleum-based diesel fuel can be used in diesel engines without any signifi cant modifi cations to the engines. Data from the numerous research reports and test programs showed that as the percent of biodiesel in blends increases, emission of hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM) all decrease, but the amount of oxides of nitrogen (NOx) and fuel consumption is tend to increase. The most signifi cant hurdle for broader commercialization of biodiesel is its cost. In current fuel price policy in Indonesia (especially fuel for transportation), the higher percent of biodiesel in blend will increase the price of blends fuel. The objective of this study is to assess the optimum blends of biodiesel with petroleum-based diesel fuel from the technically and economically consideration. The study result recommends that 20% biodiesel blend with 80% petroleum-based diesel fuel (B20) is the optimum blend for unmodifi ed diesel engine uses.Keywords: biodiesel, emission, optimum, blend

Author(s):  
David F. Merrion

Exhaust emissions from heavy-duty diesel engines have been legislated since the 1960’s and continue until 2010. Smoke emissions continue to be controlled but exhaust odor regulations were never promulgated. Gaseous emissions (oxides of nitrogen, carbon monoxide, hydrocarbons) were not regulated until 1973 and particulate matter first regulated in 1988. Emission regulations have been through several periods of cooperation between regulators and manufacturers but there have also been periods of conflict and lawsuits. The most recent issues are with the October 2002 requirements of the Consent Decrees signed by seven diesel engine manufacturers and USEPA/US DOJ/CARB. Also the 2007/2010 regulations are under review.


Author(s):  
Pravin Ashok Madane ◽  
Subrata Bhowmik ◽  
Rajsekhar Panua ◽  
P. Sandeep Varma ◽  
Abhishek Paul

Abstract The present investigation accentuates the impact of Undi biodiesel blended Diesel on combustion, performance, and exhaust fume profiles of a single-cylinder, four-stroke Diesel engine. Five Undi biodiesel-Diesel blends were prepared and tested at four variable loads over a constant speed of 1500 (±10) rpm. The Undi biodiesel incorporation to Diesel notably improves the in-cylinder pressure and heat release rate of the engine. The higher amount of Undi biodiesel addition enhances the brake thermal efficiency and brake specific energy consumption of the engine. In addition, the Undi biodiesel facilitates to reduce the major pollutants, such as brake specific unburned hydrocarbon, brake specific carbon monoxide, and brake specific particulate matter emissions with slightly higher brake specific oxides of nitrogen emissions of the engine. To this end, a trade-off study was introduced to locate the favorable Diesel engine operating conditions under Undi biodiesel-Diesel strategies. The optimal Diesel engine outputs were found to be 32.65% of brake thermal efficiency, 1.21 g/kWh of brake specific cumulated oxides of nitrogen and unburned hydrocarbon, 0.94 g/kWh of brake specific carbon monoxide, and 0.32 g/kWh of brake specific particulate matter for 50% (by volume) Undi biodiesel share blend at 5.6 bar brake mean effective pressure with a relative closeness value of 0.978, which brings up the pertinence of the trade-off study in Diesel engine platforms.


Author(s):  
Mike Bunce ◽  
David Snyder ◽  
Gayatri Adi ◽  
Carrie Hall ◽  
Gregory Shaver

As the world is faced with continued petroleum demand, the need for alternative fuels which are renewable and domestically available is becoming apparent. Biodiesel is one such attractive alternative fuel which has physical and chemical properties similar to, and miscible with conventional diesel. While biodiesel does have many advantages, due to fuel property differences including oxygenation and a lower calorific value than diesel fuel, biodiesel combustion often results in higher fuel consumption and higher nitrogen oxide (NOx) emissions than diesel combustion. Stock diesel engine design and decision making target optimal performance with conventional diesel fuel, leading to suboptimal results for biodiesel. This study aimed to determine the appropriate engine decision making for the air/fuel ratio (AFR), exhaust gas recirculation (EGR) fraction, injection (rail) pressure, and start of main fuel injection (SOI) in a modern common rail diesel engine using variable geometry turbo-charging and operating with varying blend ratios of diesel and soy-based biodiesel fuel mixtures to minimize brake-specific fuel consumption (BSFC) and adhere to strict combustion noise, NOx and particulate matter (PM) emission constraints. When operating with the stock engine decision making, biodiesel blend combustion resulted in increases in NOx of up to 39% and fuel consumption increases up to 20% higher than the nominal diesel levels but also had substantial reductions in PM. Through modulation of the AFR, EGR fracton, rail pressure, and SOI at several operating points, it was demonstrated that the optimal engine decision-making for biodiesel shifted to lower AFRs and higher EGR fractions in order to reduce NOx, and shifted to more advanced timings in order to mitigate the observed increases in fuel consumption at the nominal settings. The optimal parameter combinations for B5 (5% biodiesel and 95% diesel), B20 (20% biodiesel and 80% diesel) and B100 (100% biodiesel) still maintained substantial PM reductions but resulted in NOx and noise levels below nominal diesel levels. However, these parameter combinations had little impact on reducing the biodiesel fuel consumption penalty but did improve the thermal efficiency of biodiesel blend combustion.


2016 ◽  
Vol 20 (2) ◽  
pp. 303-306
Author(s):  
Nicholas A. Musa ◽  
Georgina M. Teran ◽  
Saraki A. Yaman

The use of biodiesel in running diesel has been called for, with a view to mitigating the environmental pollution, depletion, cost and scarcity associated with the use diesel in running diesel engine. So the need to characterize the emissions from these biodiesel, cannot be overemphasized, hence this paper presents the evaluation of the emissions of particulate matter (PM), carbon monoxide(CO), hydrocarbon(HC) and oxides of nitrogen (NOX) from diesel engine run on coconut oil biodiesel, its blends and diesel for comparison. The result of the evaluation showed that NOX emission increased with increase in percentage of the biodiesel in the blend, while PM, CO, HC decreased with increase in the percentage biodiesel in the blend. In comparison with diesel, diesel has the least emission of NOX and the highest emission of PM, CO and HC.Keywords: Diesel engine, diesel, coconut oil biodiesel, blends, emissions


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2021 ◽  
pp. 28-32
Author(s):  
VALERIY L. CHUMAKOV ◽  

The paper shows some ways to improve the environmental characteristics of a diesel engine using gaseous hydrocarbon fuel and operating the engine in a gas-diesel cycle mode. Some possibilities to reduce toxic components of exhaust gases in a gas-diesel engine operating on liquefi ed propane-butane mixtures have been studied. Experiments carried out in a wide range of load from 10 to 100% and speed from 1400 to 2000 rpm showed that the gas-diesel engine provides a suffi ciently high level of diesel fuel replacement with gas hydrocarbon fuel. The authors indicate some eff ective ways to reduce the toxicity of exhaust gases. The engine power should be adjusted by the simultaneous supply of fuel, gas and throttling the air charge in the intake manifold. This method enriches the fi rst combusting portions to reduce nitrogen oxides and maintains the depletion of the main charge within the fl ammability limits of the gas-air charge to reduce carbon monoxide and hydrocarbons. The authors found that when the engine operates in a gas-diesel cycle mode, the power change provides a decrease in nitrogen oxide emissions of gas-diesel fuel only due to gas supply in almost the entire load range as compared to the pure diesel. At high loads (more than 80%) stable engine operation is ensured up to 90% of diesel fuel replaced by gas. Even at 10% of diesel fuel used the concentration of nitrogen oxides decreases by at least 15…20% as compared with a diesel engine in the entire load range. However, there is an increased emission of hydrocarbons and carbon monoxide in the exhaust gases. Further experimental studies have shown that optimization of the gas diesel regulation can reduce the mass emission of nitrogen oxides contained in exhaust gases in 2…3 times and greatly reduce the emission of incomplete combustion products – carbon monoxide and hydrocarbons.


Author(s):  
P. Venkateswara Rao ◽  
S. Ramesh ◽  
S. Anil Kumar

The primary objective of this work is to reduce the particulate matter (PM) or smoke emission and oxides of nitrogen (NOx emissions) the two important harmful emissions and to increase the performance of diesel engine by using oxygenated additives with diesel as blend fuel. Formulation of available diesel fuel with additives is an advantage than considering of engine modification for improvement of higher output. From the available additives, three oxygenates are selected for experimentation by considering many aspects like cost, content of oxygen, flashpoint, solubility, seal etc. The selected oxygenates are Ethyl Aceto Acetate (EAA), Diethyl Carbonate (DEC), Diethylene Glycol (DEG). These oxygenates are blended with diesel fuel in proportions of 2.5%, 5% and 7.5% by volume and experiments were conducted on a single cylinder naturally aspirated direct injection diesel engine. From the results the conclusion are higher brake power and lower BSFC obtained for DEC blends at 7.5% of additive as compared to EAA, DEG and diesel at full load. In case of DEC blends the smoke emission is lower, whereas NOx emissions are very low in case of EAA additive blend fuels. The DEC can be considered is the best oxygenating additive to be blend with diesel in a proportion of 7.5% by volume.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


Author(s):  
Masoud Iranmanesh ◽  
J. P. Subrahmanyam ◽  
M. K. G. Babu

In this investigation, tests were conducted on a single cylinder DI diesel engine fueled with neat diesel and biodiesel as baseline fuel with addition of 5 to 20% DEE on a volume basis in steps of 5 vol.% as supplementary oxygenated fuel to analyze the simultaneous reduction of smoke and oxides of nitrogen. Some physicochemical properties of test fuels such as heating value, viscosity, specific gravity and distillation profile were also determined in accordance to the ASTM standards. The results obtained from the engine tests have shown a significant reduction in NOX emissions especially for biodiesel and a little decrease in smoke of DEE blends compared with baseline fuels. A global overview of the results has shown that the 5% DEE-Diesel fuel and 15% DEE-Biodiesel blend are the optimal blend based on performance and emission characteristics.


2014 ◽  
Vol 1008-1009 ◽  
pp. 995-1000
Author(s):  
Pi Qiang Tan ◽  
Shu Wang ◽  
Yuan Hu Zhi ◽  
Di Ming Lou

Emission characteristics of an electronic-controlled high pressure common-rail diesel engine with low-blend Gas-to-liquids (GTL) and low-blend biodiesel fuels are studied. Pure diesel fuel, G10 fuel (10% GTL blend with diesel fuel) and B10 fuel (10% biodiesel blend with diesel fuel) are used in this research. The results show that torque of the engine with pure diesel fuel is higher than G10 fuel, and B10 fuel is the lowest. Compared to the pure diesel fuel, the brake specific fuel consumption (BSFC) of the engine with G10 fuel decreases, but the B10 fuel increases slightly. Hydrocarbon (HC) emissions of the engine with G10 fuel or B10 fuel are lower than the pure diesel fuel, and the carbon monoxide (CO) emission increases slightly, and nitrogen oxides (NOx) emissions have no distinct change. Compared to the G10 fuel, the CO and HC emissions of the engine with B10 fuel are lower.


Sign in / Sign up

Export Citation Format

Share Document