scholarly journals Prediksi Indeks Harga Konsumen Menggunakan Metode Long Short Term Memory (LSTM) Berbasis Cloud Computing

2019 ◽  
Vol 3 (3) ◽  
pp. 357-363
Author(s):  
Soffa Zahara ◽  
Sugianto ◽  
M. Bahril Ilmiddafiq

Long Short Term Memory (LSTM) is known as optimized Recurrent Neural Network (RNN) architectures that overcome RNN’s lact about maintaining long period of memories. As part of machine learning networks, LSTM also notable as the right choice for time-series prediction. Currently, machine learning is a burning issue in economic world, abundant studies such predicting macroeconomic and microeconomics indicators are emerge. Inflation rate has been used for decision making for central banks also private sector. In Indonesia, CPI (Consumer Price Index) is one of best practice inflation indicators besides Wholesale Price Index and The Gross Domestic Product (GDP). Since CPI data could be used as a direction for next inflation move, we conducted CPI prediction model using LSTM method. The network model input consists of 28 variables of staple price in Surabaya and the output is CPI value, also the entire development of prediction model are done in Amazon Web Service (AWS) Cloud. In the interest of accuracy improvement, we used several optimization algorithm i.e. Stochastic Gradient Descent (sgd), Root Mean Square Propagation (RMSProp), Adaptive Gradient(AdaGrad), Adaptive moment (Adam), Adadelta, Nesterov Adam (Nadam) and Adamax. The results indicate that Nadam has 4,008 RMSE’s value, less than other algorithm which indicate the most accurate optimization algorithm to predict CPI value.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3678
Author(s):  
Dongwon Lee ◽  
Minji Choi ◽  
Joohyun Lee

In this paper, we propose a prediction algorithm, the combination of Long Short-Term Memory (LSTM) and attention model, based on machine learning models to predict the vision coordinates when watching 360-degree videos in a Virtual Reality (VR) or Augmented Reality (AR) system. Predicting the vision coordinates while video streaming is important when the network condition is degraded. However, the traditional prediction models such as Moving Average (MA) and Autoregression Moving Average (ARMA) are linear so they cannot consider the nonlinear relationship. Therefore, machine learning models based on deep learning are recently used for nonlinear predictions. We use the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network methods, originated in Recurrent Neural Networks (RNN), and predict the head position in the 360-degree videos. Therefore, we adopt the attention model to LSTM to make more accurate results. We also compare the performance of the proposed model with the other machine learning models such as Multi-Layer Perceptron (MLP) and RNN using the root mean squared error (RMSE) of predicted and real coordinates. We demonstrate that our model can predict the vision coordinates more accurately than the other models in various videos.


2020 ◽  
Vol 27 (3) ◽  
pp. 373-389 ◽  
Author(s):  
Ashesh Chattopadhyay ◽  
Pedram Hassanzadeh ◽  
Devika Subramanian

Abstract. In this paper, the performance of three machine-learning methods for predicting short-term evolution and for reproducing the long-term statistics of a multiscale spatiotemporal Lorenz 96 system is examined. The methods are an echo state network (ESN, which is a type of reservoir computing; hereafter RC–ESN), a deep feed-forward artificial neural network (ANN), and a recurrent neural network (RNN) with long short-term memory (LSTM; hereafter RNN–LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting variables representing slow/large-scale (X), intermediate (Y), and fast/small-scale (Z) processes. For training or testing, only X is available; Y and Z are never known or used. We show that RC–ESN substantially outperforms ANN and RNN–LSTM for short-term predictions, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps equivalent to several Lyapunov timescales. The RNN–LSTM outperforms ANN, and both methods show some prediction skills too. Furthermore, even after losing the trajectory, data predicted by RC–ESN and RNN–LSTM have probability density functions (pdf's) that closely match the true pdf – even at the tails. The pdf of the data predicted using ANN, however, deviates from the true pdf. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear dynamical systems, such as weather and climate, are discussed.


Sign in / Sign up

Export Citation Format

Share Document