scholarly journals Nonexistence Proofs for Five Ternary Linear Codes

2002 ◽  
Vol 1 (1) ◽  
pp. 35
Author(s):  
S. GURITMAN

<p>An [n,k, dh-code is a ternary linear code with length n, dimension k and minimum distance d. We prove that codes with parameters [110,6, 72h, [109,6,71h, [237,6,157b, [69,7,43h, and [120,9,75h do not exist.</p>

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Toshiharu Sawashima ◽  
Tatsuya Maruta

<p style='text-indent:20px;'>One of the fundamental problems in coding theory is to find <inline-formula><tex-math id="M3">\begin{document}$ n_q(k,d) $\end{document}</tex-math></inline-formula>, the minimum length <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula> for which a linear code of length <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula>, dimension <inline-formula><tex-math id="M6">\begin{document}$ k $\end{document}</tex-math></inline-formula>, and the minimum weight <inline-formula><tex-math id="M7">\begin{document}$ d $\end{document}</tex-math></inline-formula> over the field of order <inline-formula><tex-math id="M8">\begin{document}$ q $\end{document}</tex-math></inline-formula> exists. The problem of determining the values of <inline-formula><tex-math id="M9">\begin{document}$ n_q(k,d) $\end{document}</tex-math></inline-formula> is known as the optimal linear codes problem. Using the geometric methods through projective geometry and a new extension theorem given by Kanda (2020), we determine <inline-formula><tex-math id="M10">\begin{document}$ n_3(6,d) $\end{document}</tex-math></inline-formula> for some values of <inline-formula><tex-math id="M11">\begin{document}$ d $\end{document}</tex-math></inline-formula> by proving the nonexistence of linear codes with certain parameters.</p>


2011 ◽  
Vol 68 (1-3) ◽  
pp. 407-425 ◽  
Author(s):  
Tatsuya Maruta ◽  
Yusuke Oya

2011 ◽  
Vol 57 (9) ◽  
pp. 6089-6093 ◽  
Author(s):  
Iliya Georgiev Bouyukliev ◽  
Erik Jacobsson

10.37236/9008 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Mustafa Gezek ◽  
Rudi Mathon ◽  
Vladimir D. Tonchev

In this paper we consider binary linear codes spanned by incidence matrices of Steiner 2-designs associated with maximal arcs in projective planes of even order, and their dual codes. Upper and lower bounds on the 2-rank of the incidence matrices are derived. A lower bound on the minimum distance of the dual codes is proved, and it is shown that the bound is achieved if and only if the related maximal arc contains a hyperoval of the plane. The  binary linear codes of length 52 spanned by the incidence matrices of 2-$(52,4,1)$ designs associated with previously known and some newly found maximal arcs of degree 4 in projective planes of order 16 are analyzed and classified up to equivalence. The classification shows that some designs associated with maximal arcs in nonisomorphic planes generate equivalent codes. This phenomenon establishes new links between several of the known planes. A conjecture concerning the codes of maximal arcs in $PG(2,2^m)$ is formulated.


2016 ◽  
Vol 27 (05) ◽  
pp. 595-605 ◽  
Author(s):  
Xianfang Wang ◽  
Jian Gao ◽  
Fang-Wei Fu

In principle, every linear code can be used to construct a secret sharing scheme. However, determining the access structure of the scheme is a very difficult problem. In this paper, we study MacDonald codes over the finite non-chain ring [Formula: see text], where p is a prime and [Formula: see text]. We provide a method to construct a class of two-weight linear codes over the ring. Then, we determine the access structure of secret sharing schemes based on these codes.


Sign in / Sign up

Export Citation Format

Share Document