scholarly journals The effect of supernatant product of adipose tissue derived mesenchymal stem cells and density gradient centrifugation preparation methods on pregnancy in intrauterine insemination cycles: An RCT

2018 ◽  
Vol 16 (3) ◽  
pp. 199-208
Author(s):  
Hoda Fazaeli ◽  
Faezeh Davoodi ◽  
Naser Kalhor ◽  
Reza Tabatabaii Qomi ◽  
◽  
...  
Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 933
Author(s):  
Cagla Guler ◽  
Sureyya Melil ◽  
Umit Ozekici ◽  
Yaprak Donmez Cakil ◽  
Belgin Selam ◽  
...  

In recent years, microfluidic chip-based sperm sorting has emerged as an alternative tool to centrifugation-based conventional techniques for in vitro fertilization. This prospective study aims to compare the effects of density gradient centrifugation and microfluidic chip sperm preparation methods on embryo development in patient populations with astheno-teratozoospermia. In the study, the semen samples of the patients were divided into two groups for preparation with either the microfluidic or density gradient methods. Selected spermatozoa were then used to fertilize mature sibling oocytes and the semen parameters and embryo development on days 3 and 5 were assessed. While the density gradient group was associated with a higher sperm concentration, motility (progressive and total) was significantly higher in the microfluidic chip group. No significant differences were observed in the fertilization rates or grade 1 (G1) and grade 2 (G2) proportions of the third-day embryos. Furthermore, while the proportions of the poor, fair and good blastocysts on day 5 did not differ significantly, excellent blastocysts (indicating high-quality embryos) were observed in a significantly higher proportion of the microfluidic chip group. When compared to the classical density gradient method, the microfluidic chip sperm preparation yielded sperm with higher motility and higher quality blastocysts at day 5; in patients with astheno-teratozoospermia.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1477
Author(s):  
Jun Hyung Ryu ◽  
Seung Pyo Gong

Fish ovarian germline stem cells (OGSCs) have great potential in various biological fields due to their ability to generate large numbers of mature eggs. Therefore, selective enrichment of OGSCs is a prerequisite for successful applications. To determine the optimal conditions for the enrichment of OGSCs from Japanese medaka (Oryzias latipes), we evaluated the effects of Percoll density gradient centrifugation (PDGC), differential plating (DP), and a combination of both methods. Based on cell morphology and gene expression of germ cell-specific Vasa and OGSC-specific Nanos2, we demonstrated that of seven density fractions obtained following PDGC, the 30–35% density fraction contained the highest proportion of OGSCs, and that Matrigel was the most effective biomolecule for the enrichment of Oryzias latipes OGSCs by DP in comparison to laminin, fibronectin, gelatin, and poly-l-lysine. Furthermore, we confirmed that PDGC and DP in combination significantly enhanced the efficiency of OGSC enrichment. The enriched cells were able to localize in the gonadal region at a higher efficiency compared to non-enriched ovarian cells when transplanted into the developing larvae. Our approach provides an efficient way to enrich OGSCs without using OGSC-specific surface markers or transgenic strains expressing OGSC-specific reporter proteins.


Author(s):  
Lee F. Ellis ◽  
Richard M. Van Frank ◽  
Walter J. Kleinschmidt

The extract from Penicillum stoliniferum, known as statolon, has been purified by density gradient centrifugation. These centrifuge fractions contained virus particles that are an interferon inducer in mice or in tissue culture. Highly purified preparations of these particles are difficult to enumerate by electron microscopy because of aggregation. Therefore a study of staining methods was undertaken.


Sign in / Sign up

Export Citation Format

Share Document