scholarly journals Challenge of polymers for biosimilar products packaging

2021 ◽  
Vol 5 (1) ◽  
pp. 057-058
Author(s):  
Chanda Anupam

Presently Packaging plays a significant role for Biosimilar product. The process of selecting materials and the type of packaging also offers an opportunity for the Packaging scientist to look for new biological delivery choices. Most injectable protein products were supplied in some sort of glass vial, prefilled syringe, and cartridge. Those product having high Ph content there is a chance of “delamination “from inner surface of glass vial. With protein-based drugs, the biggest issue is the effect of packaging derivatives on the protein’s three-dimensional and surface structure. These are any effects that relate to denaturation or aggregation of the protein due to oxidation or interactions from contaminants or impurities in the preparation. The potential for these effects needs to be carefully considered in choosing the container and the container closure system to avoid putting patients in jeopardy.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2273
Author(s):  
Wan-Ying Huang ◽  
Norichika Hashimoto ◽  
Ryuhei Kitai ◽  
Shin-ichiro Suye ◽  
Satoshi Fujita

The occasional malignant transformation of intracranial epidermoid cysts into squamous cell carcinomas remains poorly understood; the development of an in vitro cyst model is urgently needed. For this purpose, we designed a hollow nanofiber sphere, the “nanofiber-mâché ball.” This hollow structure was fabricated by electrospinning nanofiber onto alginate hydrogel beads followed by dissolving the beads. A ball with approximately 230 mm3 inner volume provided a fibrous geometry mimicking the topography of the extracellular matrix. Two ducts located on opposite sides provided a route to exchange nutrients and waste. This resulted in a concentration gradient that induced oriented migration, in which seeded cells adhered randomly to the inner surface, formed a highly oriented structure, and then secreted a dense web of collagen fibrils. Circumferentially aligned fibers on the internal interface between the duct and hollow ball inhibited cells from migrating out of the interior, similar to a fish bottle trap. This structure helped to form an adepithelial layer on the inner surface. The novel nanofiber-mâché technique, using a millimeter-sized hollow fibrous scaffold, is excellently suited to investigating cyst physiology.


Author(s):  
Ketki Lichade ◽  
Yizhou Jiang ◽  
Yayue Pan

Abstract Recently, many studies have investigated additive manufacturing of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the Two-Photon Polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally-hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (>80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces.


1983 ◽  
Vol 97 (3) ◽  
pp. 713-722 ◽  
Author(s):  
S A Nierzwicki-Bauer ◽  
D L Balkwill ◽  
S E Stevens

The first complete three-dimensional ultrastructural reconstruction of a cyanobacterium was accomplished with high-voltage electron microscopy and computer-aided assembly of serial sections. The precise arrangement of subcellular features within the cell body was very consistent from one cell to another. Specialized inclusion bodies always occupied specific intracellular locations. The photosynthetic thylakoid membranes entirely surrounded the central portion of the cytoplasm, thereby compartmentalizing it from the rest of the cell. The thylakoid membranes formed an interconnecting network of concentric shells, merging only at the inner surface of the cytoplasmic membrane. The thylakoids were in contact with the cytoplasmic membrane at several locations, apparently to maintain the overall configuration of the thylakoid system. These results clarified several unresolved issues regarding structure-function relationships in cyanobacteria.


2009 ◽  
Vol 32 (11-12) ◽  
pp. 1768-1827 ◽  
Author(s):  
Daniel L. Norwood ◽  
Dennis Jenke ◽  
Cristina Manolescu ◽  
Scott Pennino ◽  
Nelu Grinberg

2019 ◽  
Vol 9 (9) ◽  
pp. 1798 ◽  
Author(s):  
Son ◽  
Yu ◽  
Yoon ◽  
Lee

This study set out to compare the three-dimensional (3D) trueness of crowns produced from three types of lithium disilicate blocks. The working model was digitized, and single crowns (maxillary left second molar) were designed using computer-aided design (CAD) software. To produce a crown design model (CDM), a crown design file was extracted from the CAD software. In addition, using the CDM file and a milling machine (N = 20), three types of lithium disilicate blocks (e.max CAD, HASS Rosetta, and VITA Suprinity) were processed. To produce a crown scan model (CSM), the inner surface of each fabricated crown was digitized using a touch-probe scanner. In addition, using 3D inspection software, the CDM was partitioned (into marginal, axis, angular, and occlusal regions), the CDM and CSM were overlapped, and a 3D analysis was conducted. A Kruskal–Wallis test (α = 0.05) was conducted with all-segmented teeth with the root mean square (RMS), and they were analyzed using the Mann–Whitney U-test and the Bonferroni correction method as a post hoc test. There was a significant difference in the trueness of the crowns according to the type of lithium disilicate block (p < 0.001). The overall RMS value was at a maximum for e.max (42.9 ± 4.4 µm), followed by HASS (30.1 ± 9.0 µm) and then VITA (27.3 ± 7.9 µm). However, there was no significant difference between HASS and VITA (p = 0.541). There were significant differences in all regions inside the crown (p < 0.001). There was a significantly high trueness in the angular region inside the crown (p < 0.001). A correction could thus be applied in the CAD process, considering the differences in the trueness by the type of lithium disilicate block. In addition, to attain a crown with an excellent fit, it is necessary to provide a larger setting space for the angular region during the CAD process.


1998 ◽  
Vol 102 (6) ◽  
pp. 2108-2113 ◽  
Author(s):  
Tomohiro Yamada ◽  
Toshio Sugahara ◽  
Yoshihide Mori ◽  
Masayosi Sakuda

2014 ◽  
Vol 20 (S3) ◽  
pp. 60-61
Author(s):  
Lewys Jones ◽  
Vidar T. Fauske ◽  
Katherine E. MacArthur ◽  
Antonius T. J. van Helvoort ◽  
Peter D. Nellist

Sign in / Sign up

Export Citation Format

Share Document