A comparison of the effects of different rangeland management systems on plant species composition, diversity and vegetation structure in a semi-arid savanna

2005 ◽  
Vol 22 (1) ◽  
pp. 59-71 ◽  
Author(s):  
M Smet ◽  
D Ward
2021 ◽  
Vol 67 (3-4) ◽  
pp. 149-155
Author(s):  
Har'el Agra ◽  
Hadar Shalom ◽  
Omar Bawab ◽  
Gyongyver J. Kadas ◽  
Leon Blaustein

Abstract Green roofs are expected to contribute to higher biodiversity in urban surroundings. Typically, green roofs have been designed with low plant diversity. However, plant diversity can be enhanced by controlling resource availability and creating distinct niches. Here we hypothesize that by using different drainage heights during the short plant-growing season in a semi-arid green roof system we can create distinct niches and plant communities. Our experiment took place at the University of Haifa, north Israel. We tested three different heights of drainage outlet: 10 cm under the surface of the substrate (Low), 1 cm under the surface of the substrate (Medium) and 3 cm above the surface of the substrate (High) on plant species-composition in green-roof gardens. Grasses cover was higher in High and Medium drainages while forbs cover was higher in Low drainage. Species richness was the highest in Low drainage while diversity indices showed the opposite trend. We conclude that by changing the height of the drainage we can create different niches and change species composition in a short time period of one growing season. This way we can create more diverse green roof communities and enhance biodiversity in urban areas, particularly in semi-arid regions.


2016 ◽  
Vol 42 (1) ◽  
pp. 72-83 ◽  
Author(s):  
R. Scholtz ◽  
I. P. J. Smit ◽  
C. Coetsee ◽  
G. A. Kiker ◽  
F. J. Venter

2019 ◽  
Vol 41 (2) ◽  
pp. 135 ◽  
Author(s):  
Sarah E. McDonald ◽  
Nick Reid ◽  
Rhiannon Smith ◽  
Cathleen M. Waters ◽  
John Hunter ◽  
...  

Despite the increasing extent of protected areas throughout the world, biodiversity decline continues. Grazing management that promotes both biodiversity and production outcomes has the potential to improve broad-scale conservation and complement the protected area network. In this study we explored the potential to integrate commercial livestock grazing and conservation in a semi-arid rangeland in south-eastern Australia. Understorey floristic composition and diversity were compared at different spatial scales across three grazing management treatments: (1) continuous commercial grazing management where paddocks were grazed for the majority of the year (≥8 months per annum); (2) rotational commercial grazing management where livestock are frequently rotated and paddocks rested for >4 months per annum; and (3) protected areas managed for conservation with domestic livestock excluded and grazed only by native and feral herbivores. The season of sampling, rainfall, soil characteristics and the spatial location of sites were the dominant drivers of variability in understorey plant species composition; the effect of grazing treatment on understorey plant species composition was relatively minor. However, areas managed for conservation and under rotational forms of commercial grazing management generally had greater floristic richness and diversity than continuously grazed areas, the results varying with season (spring/autumn) and soil type (clay/sandy-loam), particularly at fine scale (1-m2 quadrats). These findings indicate that rotational grazing management on commercial properties has the potential to improve biodiversity conservation outside the reserve system compared to conventional grazing management.


Author(s):  
Kateřina Francová ◽  
Kateřina Šumberová ◽  
Andrea Kučerová ◽  
Michal Šorf ◽  
Stanislav Grill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document