scholarly journals The Analysis of the Financial Risk Compensation Mechanism of Sub-funds of Poverty Alleviation Industry of Guizhou Poverty Alleviation Investment Fund by Using Game Theory

Author(s):  
Ziyan Wang ◽  
Yiming Cai
Author(s):  
Patrick K. Lewis ◽  
Christopher A. Mattson ◽  
Vance R. Murray

Reconfigurable products can adapt to new and changing customer needs. One potential, high-impact, area for product reconfiguration is in the design of income-generating products for poverty alleviation. Non-reconfigurable income-generating products such as manual irrigation pumps have helped millions of people sustainably escape poverty. However, millions of other impoverished people are unwilling to invest in these relatively costly products because of the high perceived and actual financial risk involved. As a result, these individuals do not benefit from such technologies. Alternatively, when income-generating products are designed to be reconfigurable, the window of affordability can be expanded to attract more individuals, while simultaneously making the product adaptable to the changing customer needs that accompany an increased income. The method provided in this paper significantly reduces the risks associated with purchasing income-generating products while simultaneously allowing the initial purchase to serve as a foundation for future increases in income. The method presented builds on principles of multiobjective optimization and Pareto optimality, by allowing the product to move from one location on the Pareto frontier to another through the addition of modules and reconfiguration. Elements of product family design are applied as each instantiation of the reconfigurable product is considered in the overall design optimization of the product. The design of a modular irrigation pump for developing nations demonstrates the methodology.


2019 ◽  
Vol 8 (2) ◽  
pp. 5669-5675

The competitive power system market involves very high financial risk due to the essential requirements of real-time bidding decision making. Decisions once taken cannot be altered easily because multiple generators participate in bidding process while simultaneously dispatching to meet the load demand most economically. In order to avoid such risks it becomes pertinent to re-structure the bidding strategies from time to time to meet upcoming techno-economical challenges. In this paper, three generating units are studied using Matrix Laboratory software with a novel approach for deciding the best strategy from the most economical strategy viewpoint. A scenario of different formulations is created for muti-player game, which then is solved with the help of zero-sum polymatrix game theory. A systematic tabular layout of revenues pertaining to each formulation in terms of mixed strategies is developed. The minimax and maximin revenues, identified using Game theoretic approach, gave the most economical strategy. Thus exact and self-enforcing generalized method for best bidding strategies of all three generators are logically derived for the most optimal solution.


Sign in / Sign up

Export Citation Format

Share Document