scholarly journals Analysis of Performance characteristics of an Internal Combustion Engine with Thermal barrier coated piston

Investigation of the thermal analysis of a conventional (uncoated) diesel piston made up of Aluminum silicon alloy was carried out in this present study. Secondly, thermal analysis was performed on piston crown, coated with 20% Al2O3 & 80% Yttria Stabilized Zirconia material. TBC comes with two layers; the first layer is a bond coating with NiCoCrAlY compound. The second layer with TBC material (20% Aluminum oxide & 80% Yttria Stabilized Zirconia). The method of multilayer coating was achieved through the Air Plasma spraying technique. Using the coated piston the required temperature in the combustion chamber will be maintained. This will reduce the heat loss to the piston. This reduction in the heat loss will be used to burn the un-burnt gases thereby reducing the polluted exhaust gases. Result will be shown as the thermal efficiency of the coated piston at full load will be increased than uncoated piston and the oxides of nitrogen will be increased.

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 792
Author(s):  
Hasan Demir

Fused filament fabrication is an important additive manufacturing method, for which 3D printers are the most commonly used printing tools. In this method, there are many factors that affect the printing quality, chief among which is temperature. The fusion temperature of the material is created by an aluminum heating block in the extruder. Stability and a constant temperature for the aluminum heating block are inevitable requirements for print quality. This study aims to use the thermal barrier coating method to increase the thermal efficiency and stability of the aluminum heating block by reducing heat loss. Furthermore, it aims to perform steady-state thermal analysis using finite element analysis software. The analyses are carried out in stagnant air environment and at the printing temperature of acrylonitrile butadiene styrene material. In order to examine the effects of different coating materials, blocks coated with two different coating materials, as well as uncoated blocks, were used in the analyses. The coating made with yttria-stabilized zirconia and pyrochlore-type lanthanum zirconate materials, together with the NiCRAl bond layer, prevent temperature fluctuation by preventing heat loss. The effects of the coating method on average heat flux density, temperature distribution of blocks, and temperature distribution of the filament tube hole were investigated. Additionally, changes in flow velocity were determined by examining the effects of the thermal barrier coating method on temperature distribution. The average heat flux density in the coated blocks decreased by 10.258%. Throughout the investigation, the temperature distributions in the coated blocks became homogeneous. It was also observed that both coating materials produce the same effect. This article performs a steady-state thermal analysis of a conventional model and thermal-barrier-coated models to increase print quality by reducing heat loss from the aluminum heating block.


Author(s):  
Muhammad Asad Riaz

An observational study of thermal barrier coating (TBC) on the working of 4-stroke single cylinder petrol engine was studied. Yttria Stabilized Zirconia (YSZ) used as coating material. YSZ has less thermal conductivity, sustainability under high temperature and pressure. Main aim of TBC is to decrease heat losses to the cooling jacket of the engine. YSZ is coated on the piston crown by Plasma spray method. YSZ coating improves the performance of petrol engine. Experimental study was carried out on 4-stroke single cylinder OHV petrol engine 25‎°C inclined cylinder horizontal shaft engine on performance of ceramic coated engine and compared with baseline engine under different speed. Results show that ceramic coated engine is more effective than conventional engine as brake specific fuel consumption (BSFC) is reduced 2-4% than normal piston engine, brake thermal efficiency (BTE) of modified engine is expanded 4-8% than unmodified engine. Indicated thermal efficiency (ITE) of modified piston engine is increased 5-10% than normal engine. Mechanical efficiency (ME) of the TBC engine is increased 4-10% than standard engine. Volumetric efficiency (VE) of modified engine is decreased 3-9% when compared with standard engine and exhaust gas temperature (EGT) of ceramic coated engine is increased 1-3% than unmodified engine. KEYWORDS: Petrol Engine, Thermal barrier coating (TBC), Yttria Stabilized Zirconia (YSZ). Mechanical Efficiency


Author(s):  
Clara Mock ◽  
Michael J. Walock ◽  
Andrew Wright ◽  
Andy Nieto ◽  
Anindya Ghoshal ◽  
...  

Abstract Military rotorcraft are particularly susceptible to engine damage from environmental particulates. While inertial particle separators are efficient at removing large particles, fine particulates (75 μm or smaller) are still entering the engine. Once into the hot-section, these fine particulates melt, impinge the hot-section components, and solidify as calcia-magnesia-alumina-silicate (CMAS) glasses. Infiltration from these glassy deposits can significantly reduce component lifetimes through the loss of strain tolerance and increased thermal conductivity within the thermal barrier coatings (TBCs) protecting the underlying substrates. Engine life knockdowns can lead to significant increases in the operations and sustainment costs of military aviation assets. In addition, the adhesion and build-up of the glassy CMAS deposit on hot-section components can lead to rapid performance degradation, which has resulted in the loss of aircraft and loss of life incidents during military operations in particle-laden environments. The Army Research Laboratory (ARL) is working to develop sandphobic coatings that are resistance to molten sand adhesion and the buildup of glassy CMAS deposits. To this end, this paper/presentation will focus on recent results from blending rare-earth oxides (REO) with yttria-stabilized zirconia thermal barrier coatings. Gadolinia powder was mixed with eight (8) weight percent yttria-stabilized zirconia (8YSZ) powder for consolidation via air plasma spray onto Inconel 718 discs (1-in diameter) and tested in the Hot Particulate Ingestion Rig (HPIR) under engine-relevant conditions, using AFRL-02 synthetic sand. The as-processed and tested samples were characterized using optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). Preliminary results show that mixing REOs with 8YSZ can significantly reduce molten sand adhesion compared to pure 8YSZ.


Sign in / Sign up

Export Citation Format

Share Document