scholarly journals Banning Two-stroke Auto-rickshaws in Lahore: Policy Implications

2006 ◽  
Vol 45 (4II) ◽  
pp. 1169-1185
Author(s):  
Mohammad Rafiq Khan

The motorcycles and rickshaws, due to being equipped with two-stroke engines, are the most inefficient vehicles in complete burning of fuel and thus contribute most to emission of air pollutants in the environment. The major pollutants from two-stroke engines are Carbon Monoxide (CO), Nitrogen Oxides (NOx), Hydrocarbons (HC) and Particulate Matter (PM). Their presence in the environment causes a number of respiratory diseases and other illnesses. For example, CO and NOx are notorious irritants of respiratory system and have potential suffocating action. PM causes premature death, and illness. Its presence is accompanied by increased hospital admissions for asthma and other bronchial conditions such as bronchitis, etc.

2021 ◽  
pp. 55-57
Author(s):  
Vengada Krishnaraj S. P ◽  
Roshan Kumar. M ◽  
Vinod Kumar. V

BACKGROUND: Air pollution is an important environmental risk factor for human health. Evidence is mounting that ambient air pollution exposure is signicantly associated with respiratory diseases. Ambient air pollution, such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM), is associated with mortality and morbidity induced by respiratory diseases. The relationship between air pollutants and respiratory hospital admissions has been reported both in developed countries and in developing countries. Other studies have shown an adverse effect of ambient air pollution exposure on morbidity and mortality, as well as on healthcare costs. AIM OF THE STUDY: To investigate the association between ambient air pollutant exposure and daily hospital admissions for respiratory diseases in both childrens and Adults. METHODOLOGY: The daily emergency hospital admissions for respiratory conditions in the north part of Chennai during 2019- 2020 were recorded. Daily counts of hospital admissions for total respiratory conditions (43 admissions day(-1)), acute respiratory infections including pneumonia (18 day(-1)), chronic obstructive pulmonary disease (COPD) (13 day(-1)), and asthma (4.5 day(-1)) among residents of all ages and among children (0-14 yrs) were analysed. The generalized additive models included spline smooth functions of the day of study, mean temperature, mean humidity, inuenza epidemics, and indicator variables for days of the week and holidays. Total respiratory admissions were signicantly associated with the same-day level of NO2 (2.5% increase per interquartile range (IQR) change, 22.3 microg x m(-3)) and CO (2.8% increase per IQR, 1.5 mg x m(-3)). RESULTS: The daily mean concentrations of pollutants across all studies were 65.2 µg/m3 for PM10, 45.8 µg/m3 for PM2.5, 27.7 µg/m3 for SO2, 35.0 µg/m3 forNO2and1698µg/m3for CO, and 81.1µg/m3for O3. For the single variable models, the linear effect of PM10, PM2.5, and PM1 was evaluated by adjusting for the inuence of temperature. The association between hospital admissions for respiratory disease and the level of particulate matter was statistically signicant at 0-3 daylag in females and overall. In males, no statistically signicant effect was found at lag 3 for PM10 or at lag2-3 for PM2.5 and PM1.The associations between PM2.5 and PM1, and risk of admission were no longer signicant at some lags after adjusting for NO2, SO2, CO, and O3 separately. No associations were found at lag 3 after adjusting for NO2 or at lag 2 and 3 after adjusting for O3. The effects of PM2.5 and PM1 were not changed after adjusting for CO but were weaker after adjusting for other air pollutants (NO2, SO2,and O3). CONCLUSION: The ndings of this study demonstrated that O3 was associated with an increased risk of respiratory-related admissions, especially for children <5years old. The effect was stronger in the winter than in the summer with each increase of 10 µg/m3 of O3 in winter, the risk of admissions for respiratory diseases after 5 days of exposure increased by 6.2% (95% CI3.7% - 8.8%). No signicant association between O3 and hospital admissions for wheeze-associated disorders specically was observed in children.


Author(s):  
Ecaterina–Magdalena MODAN ◽  
◽  
Adriana-Gabriela PLAIASU

Diesel vehicles produce exhaust gases that include nitrogen oxides (NOx), carbon monoxide and hydrocarbons.A major environmental problem is the elimination of nitrogen oxides, as they are major air pollutants. Global restrictions on NOx emissions from fuel combustion have been imposed. Efforts have been made to develop catalysts for the selective catalytic reduction of NOx. In this paper is presented the types of catalytic converters used nowadays for dissipate emissions and selective catalytic reduction.


2020 ◽  
Vol 24 (2) ◽  
pp. 373-379
Author(s):  
I.B. Abaje ◽  
Y. Bello ◽  
S.A. Ahmad

This study generally classifies air pollutants on the basis of: primary or secondary, natural or anthropogenic, chemical composition, physical state, and the space scales of their effects. Air pollutants that affect air quality in Nigeria were discussed based on natural and anthropogenic sources. The natural sources include: sand dust, sea spray, volcanic activities, smoke and carbon monoxide from wildfires among others, while the anthropogenic sources include: vehicular emissions, mining activities, industries such as cement companies and quarry factories, agricultural practices and solid waste dumps among others. Some of the atmospheric pollutants that posed greatest threat to human health were equally examined. They include: Sulphur dioxide (SO2) which can react with water vapor (H2O) in the atmosphere to form sulphuric acid (H2SO4) and thus acid rain; particulate matter (PM) with less than 10 μm, particularly fine particles (PM2.5 ) and particles in the fine fraction that are smaller than 0.1 μm (ultrafine particles), can carry toxic chemicals which are linked to cancer; carbon monoxide (CO), even in very small concentrations, can prevent oxygen from being delivered through the body major organs; ozone which is a highly reactive gas causes oxidation of a number of macromolecules within a biological system and produces free radicals that can damage DNA molecules and cause carcinogenesis. Based on the aforementioned, this study recommends that priority should be given to the establishment of air monitoring stations in all urban centers of the country in order to provide accurate and continuous information on air quality. Keywords: anthropogenic pollutants, atmosphere, particulate matter, pollution


2020 ◽  
Vol 10 (22) ◽  
pp. 7997
Author(s):  
Pedro Franco ◽  
Cristina Gordo ◽  
Eduarda Marques da Costa ◽  
António Lopes

The relevance of air pollution in the public health agenda has recently been reinforced—it is known that exposure to it has negative effects in the health of individuals, especially in big cities and metropolitan areas. In this article we observed the evolution of air pollutants (CO, NO, NO2, O3, PM10) emissions and we confront them with health vulnerabilities related to respiratory and circulatory diseases (all circulatory diseases, cardiac diseases, cerebrovascular disease, ischemic heart disease, all respiratory diseases, chronic lower respiratory diseases, acute upper respiratory infections). The study is supported in two databases, one of air pollutants and the other of emergency hospital admissions, in the 2005–2015 period, applied to the Lisbon Metropolitan Area. The analysis was conducted through Ordinary Least Squares (OLS) regression, while also using semi-elasticity to quantify associations. Results showed positive associations between air pollutants and admissions, tendentially higher in respiratory diseases, with CO and O3 having the highest number of associations, and the senior age group being the most impacted. We concluded that O3 is a good predictor for the under-15 age group and PM10 for the over-64 age group; also, there seems to exist a distinction between the urban city core and its suburban areas in air pollution and its relation to emergency hospital admissions.


Author(s):  
Tatiane Ferreira ◽  
Maria Forti ◽  
Clarice de Freitas ◽  
Felipe Nascimento ◽  
Washington Junger ◽  
...  

Author(s):  
Shi Liang ◽  
Chong Sun ◽  
Chanfang Liu ◽  
Lili Jiang ◽  
Yingjia Xie ◽  
...  

Air pollutants have significant direct and indirect adverse effects on public health. To explore the relationship between air pollutants and meteorological conditions on the hospitalization for respiratory diseases, we collected a whole year of daily major air pollutants’ concentrations from Shenzhen city in 2013, including Particulate Matter (PM10, PM2.5), Nitrogen dioxide (NO2), Ozone (O3), Sulphur dioxide (SO2), and Carbon monoxide (CO). Meanwhile, we also gained meteorological data. This study collected 109,927 patients cases with diseases of the respiratory system from 98 hospitals. We investigated the influence of meteorological factors on air pollution by Spearman correlation analysis. Then, we tested the short-term correlation between significant air pollutants and respiratory diseases’ hospitalization by Distributed Lag Non-linear Model (DLNM). There was a significant negative correlation between the north wind and NO2 and a significant negative correlation between the south wind and six pollutants. Except for CO, other air pollutants were significantly correlated with the number of hospitalized patients during the lag period. Most of the pollutants reached maximum Relative Risk (RR) with a lag of five days. When the time lag was five days, the annual average of PM10, PM2.5, SO2, NO2, and O3 increased by 10%, and the risk of hospitalization for the respiratory system increased by 0.29%, 0.23%, 0.22%, 0.25%, and 0.22%, respectively. All the pollutants except CO impact the respiratory system’s hospitalization in a short period, and PM10 has the most significant impact. The results are helpful for pollution control from a public health perspective.


Sign in / Sign up

Export Citation Format

Share Document