scholarly journals Wind Energy Dynamics of the Separately Excited Induction Generator

2019 ◽  
Vol 2 (1) ◽  
pp. p22 ◽  
Author(s):  
Oti S. Ejiofor ◽  
Eya U. Candidus ◽  
Madueme C. Victory ◽  
Eze C. Ugochukwu

This paper covers the analysis, dynamic modelling and control of an isolated self-excited induction generator (SEIG) driven by a wind turbine. The proposed dynamic model consists of induction generator, self-excitation capacitance and load model which are expressed in stationary d-q reference frame. The dynamic performance of SEIG is investigated under no load and on load. To predict the performance of the system, a MATLAB based simulation study using matlab embedded function block was carried out. Simulations from the variations of the speed and load display the dynamic behavior of the generator. A constant capacitor value of 100 micro-farads was used in this work. The simulation results obtained illustrate the changes in the voltage, currents, torque and magnetizing inductance of the generator. The wind velocity increase led to the increase in mechanical input from the wind turbine. This results in the increased rotor speed leading also to increased stator phase voltage. The obtained simulations also show that the output voltage of the induction generator depends greatly on its shaft speed and load; this poses a potential threat as it is capable of causing a significant variation in the power consumption in the load of the machine.

2014 ◽  
Vol 707 ◽  
pp. 329-332
Author(s):  
Li Ling Sun ◽  
Dan Fang

As the number of doubly fed induction generator (DFIG)- based wind-turbine systems continues to increase, wind turbines are required to provide Low Voltage Ride-Through (LVRT) capability, especially under the condition of grid voltage dips. This paper, depending on the operating characteristics of doubly-fed induction generator during grid faults ,deals with a protection and control strategy on rotor-side converter (RSC) to enhance the low voltage ride through capability of a wind turbine driven doubly fed induction generator (DFIG). The simulation and experiment studies demonstrate the correctness of the developed model and the effectiveness of the control strategy for DFIG-based wind-turbine systems under such adverse grid conditions.


2014 ◽  
Vol 672-674 ◽  
pp. 888-893
Author(s):  
Xiao Long Xiao ◽  
Xiao Hua Ding ◽  
Hao Zhang

According to the working principle of the Boost type switch converter, the small signal analysis method was used to model the Boost circuit. Its transfer function exists right half plane zero. The system is a non-minimum phase system. A PI regulator was designed. The boost circuit simulation model was built through matlab. The simulation result has a good static and dynamic performance. It verifies the rationality of the mathematical model and control strategy. It can conduct the actual circuit design.


Automatic Generation Control of two area multi unit interconnected thermal power system with dynamic participation of Doubly Fed Induction Generator based on the wind turbines. In this work two areas consisting of three unequal turbines both areas are connected to the DFIG based wind turbine. Area 1 consisting of three reheat turbines with Doubly Fed Induction Generator based on wind turbine and area2 consisting of three non reheat turbines with Doubly Fed Induction Generator based on wind turbine and two areas interconnected by tie line. Two different controllers are used, namely PID and cascaded PD-PI controllers. The controllers effectively tuned by hybridization algorithm. 1% step load disturbance is applied in area 1 for analyzing the dynamic performance. The performance of two area multi-unit power system is done in MATLAB/SIMILINK software. The dynamic response of the considered system is compared in terms of undershoots, overshoot and settling times


Sign in / Sign up

Export Citation Format

Share Document