scholarly journals Quantum Fast Algorithm Computational Intelligence PT I SW HW Smart Toolkit

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Sergey Victorovich Ulyanov

A new approach to a circuit implementation design of quantum algorithm gates for quantum massive parallel fast computing realization is presented. The main attention is focused on the development of design method of fast quantum algorithm operators as superposition, entanglement and interference which are in general time-consuming operations due to the number of products that have to be performed. SW & HW support sophisticated toolkit of supercomputing accelerator of quantum algorithm simulation is described. As example, the method for performing Grover’s interference without product operations introduced. The background of developed information technology is the "Quantum / Soft Computing Optimizer" (QSCOptKBTM) software based on soft and quantum computational intelligence toolkit. 

Author(s):  
Olga Ivancova ◽  
Vladimir Korenkov ◽  
Olga Tyatyushkina ◽  
Sergey Ulyanov ◽  
Toshio Fukuda

Principles and methodologies of quantum algorithmic gate-based design on small quantum computer described. The possibilities of quantum algorithmic gates simulation on classical computers discussed. A new approach to a circuit implementation design of quantum algorithm gates for fast quantum massive parallel computing presented. SW & HW support sophisticated smart toolkit of supercomputing accelerator of quantum algorithm simulation on small quantum programmable computer algorithm gate (that can program in SW to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates) described


Author(s):  
Seng Hansun ◽  
Subanar Subanar

      Abstract— Recently, many soft computing methods have been used and implemented in time series analysis. One of the methods is fuzzy hybrid model which has been designed and developed to improve the accuracy of time series prediction.      Popoola has developed a fuzzy hybrid model which using wavelet transformation as a pre-processing tool, and commonly known as fuzzy-wavelet method. In this thesis, a new approach of fuzzy-wavelet method has been introduced. If in Popoola’s fuzzy-wavelet, a fuzzy inference system is built for each decomposition data, then on the new approach only two fuzzy inference systems will be needed. By that way, the computation needed in time series analysis can be pressed.      The research is continued by making new software that can be used to analyze any given time series data based on the forecasting method applied. As a comparison there are three forecasting methods implemented on the software, i.e. fuzzy conventional method, Popoola’s fuzzy-wavelet, and the new approach of fuzzy-wavelet method. The software can be used in short-term forecasting (single-step forecast) and long-term forecasting. There are some limitation to the software, i.e. maximum data can be predicted is 300, maximum interval can be built is 7, and maximum transformation level can be used is 10. Furthermore, the accuracy and robustness of the proposed method will be compared to the other forecasting methods, so that can give us a brief description about the accuracy and robustness of the proposed method. Keywords—  fuzzy, wavelet, time series, soft computing


2010 ◽  
Vol 97-101 ◽  
pp. 3731-3736
Author(s):  
Pei Gang Li ◽  
Xian Ying Feng ◽  
Xiao Xia Shen ◽  
Cheng Liang Zhang

The mechanical product concept design method based on reverse engineering (RE) is a new approach in the concept design domain. The functional pattern is thought as an effective carrier and medium of mapping function to structure, which provides an efficient path for expressing the intrinsic evolution rule of the complex mechanical qualitative structure. And it is used as the information organization unit and the assembly product information model, which could give some help to express the design knowledge effectively. Therefore, we proposed a mechanical product concept design method based on RE. The examples indicated that this method is feasible and it provides a practical technical way for the knowledge reuse and continue innovation of the existence products.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450128 ◽  
Author(s):  
Qianxue Wang ◽  
Simin Yu ◽  
Christophe Guyeux ◽  
Jacques M. Bahi ◽  
Xiaole Fang

In this paper, a new approach for constructing integer domain chaotic systems (IDCS) is proposed, and its chaotic behavior is mathematically proven according to Devaney's definition of chaos. Furthermore, an analog-digital hybrid circuit is also developed for realizing the designed basic IDCS. In the IDCS circuit design, chaos generation strategy is realized through a sample-hold circuit and a decoder circuit so as to convert the uniform noise signal into a random sequence, which plays a key role in circuit implementation. The experimental observations further validate the proposed systematic methodology for the first time.


Author(s):  
Dibya Jyoti Bora

HE stain images play a crucial role in the medical imaging process. Often these images are regarded as of golden standards by physicians for the quality and accuracy. These images are fuzzy by nature, and hence, traditional hard-based techniques are not able to deal with this. Thereby, a decrease in the accuracy of the analysis process may be experienced. Preprocessing of these images is utmost needed so that the fuzziness may be removed to a satisfactory level. A new approach for tackling this problem is introduced in this chapter. The proposed technique is soft computing-based advanced adaptive ameliorated CLAHE. The experimental results demonstrate the superiority of the proposed approach than the other traditional techniques.


Sign in / Sign up

Export Citation Format

Share Document