TRANSFORMATION OF TECHNOGENIC Cu AND Zn COMPOUNDS IN CHERNOZEM

2015 ◽  
Vol 14 (2) ◽  
pp. 481-486 ◽  
Author(s):  
Saglara S. Mandzhieva ◽  
Tatiana M. Minkina ◽  
Tatiana V. Bauer ◽  
Abdulmalik A. Batukaev ◽  
Marina V. Burachevskaya ◽  
...  
Keyword(s):  
2019 ◽  
Author(s):  
Chem Int

A significant flux of heavy metals, among other toxins, reaches the lungs through smoking. This study reports Cd, Pb, Cu and Zn contents in tobacco of 11 brands of cigarette commonly sold in Ethiopia. The heavy metals were determined by atomic absorption spectrophotometry after wet digestion of cigarette tobacco using HNO3 and H2O2. The concentration of trace metals in the cigarettes ranged (mean) (μg/g), Cd: 1.3−7.6 (2.48±0.32), Pb: 0.50−12.50 (6.24±2.2), Cu: 2.89−25.35 (13.70±4.12) and Zn: 24.40−62.55 (36.22±7.50) while Ni was not detected in all the eleven brands of cigarettes. Comparable levels of trace metals were obtained in the tobacco of both imported and Ethiopian cigarettes. The average trace metal contents of cigarettes available in Ethiopia were Cd 1.82±0.39, Pb 4.23±0.97, Cu 10.2±3.1 and Zn 28.2±7.8 μg/cigarette and a person who smokes 20 cigarettes per day is estimated to increase his/her daily Cd, Pb, Cu and Zn retention by approximately 0.036, 0.085, 0.204, 0.564 mg/day, respectively. The results indicate that smoking and exposure to cigarette smoke is a serious problem to be taken into account when carrying out epidemiological studies on human exposure to trace metals.


Author(s):  
Katya Peycheva ◽  
Katya Peycheva ◽  
Mona Stancheva ◽  
Mona Stancheva ◽  
Stanislava Georgieva ◽  
...  

In this study, the ecosystem marine water-sediment-biota was investigated and the pollution was assessed. The concentrations of eight elements were determined in marine water, sediments and four fish species collected from Black Sea (Varna), Bulgaria during 2013. Marine water recorded the highest concentrations of Zn (15-22 μg/L), As (1.1–1.2 μg/L) and Pb (0.7-0.8 μg/L) while Zn (31-52 μg/g), Pb (21-29 μg/g) and Cu (20-34 μg/g) and show the highest concentrations in sediments. Water and sediments showed similar spatial distribution patterns for the highest mean values of the different metals. In the analysed fish species, the highest concentration of the metals Cu and Zn were found in Trachurus Mediterrneus (0.42 mg/kg w.w) and in Sprattus Sprattus (12.7 mg/kg w.w), respectively while the heavy metals As and Hg were found with maximum values in Pseta Maxima (3.99 mg/kg w.w and 0.08 mg/kg w.w respectively). The results from this study were compared with our data for a previous period (2004-2006) and they show decrease in the levels of heavy metal.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Noabur Rahman ◽  
Jeff Schoenau

Abstract A polyhouse study was conducted to evaluate the relative effectiveness of different micronutrient fertilizer formulation and application methods on wheat, pea and canola, as indicated by yield response and fate of micronutrients in contrasting mineral soils. The underlying factors controlling micronutrient bioavailability in a soil–plant system were examined using chemical and spectroscopic speciation techniques. Application of Cu significantly improved grain and straw biomass yields of wheat on two of the five soils (Ukalta and Sceptre), of which the Ukalta soil was critically Cu deficient according to soil extraction with DTPA. The deficiency problem was corrected by either soil or foliar application of Cu fertilizers. There were no significant yield responses of pea to Zn fertilization on any of the five soils. For canola, soil placement of boric acid was effective in correcting the deficiency problem in Whitefox soil, while foliar application was not. Soil extractable Cu, Zn, and B concentration in post-harvest soils were increased with soil placement of fertilizers, indicating that following crops in rotation could benefit from this application method. The chemical and XANES spectroscopic speciation indicates that carbonate associated is the dominant form of Cu and Zn in prairie soils, where chemisorption to carbonates is likely the major process that determines the fate of added Cu and Zn fertilizer.


2021 ◽  
Vol 22 (7) ◽  
pp. 3800
Author(s):  
Ingmar A. J. van Hengel ◽  
Melissa W. A. M. Tierolf ◽  
Lidy E. Fratila-Apachitei ◽  
Iulian Apachitei ◽  
Amir A. Zadpoor

Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.


Author(s):  
Josué M. Gonçalves ◽  
Diego Pessoa Rocha ◽  
Murillo N.T. Silva ◽  
Paulo Roberto Martins ◽  
Edson Nossol ◽  
...  

Spinel MCo2O4 (M = Ni, Fe, Mn, Cu and Zn) demonstrates excellent physicochemical properties due to combined effects of M2+ and Co2+ cations. Their inimitable optical, electronic, and mechanical properties...


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 841
Author(s):  
Marina Burachevskaya ◽  
Saglara Mandzhieva ◽  
Tatiana Bauer ◽  
Tatiana Minkina ◽  
Vishnu Rajput ◽  
...  

The presence of heavy metals in the soil could impose serious problems on soil-plant systems due to the accumulation of heavy metals in plants. Even vital elements such as Cu and Zn have a toxic effect in the case of excessive intake by living organisms. The present work aimed to investigate the content of loosely bound (exchangeable, complexed, and specifically sorbed) compounds of Cu and Zn and their availability to spring barley (Hordeum sativum distichum) in contaminated Haplic Chernozem soil under the conditions of a model experiment (five approximate permissible concentrations (APC) and 10 APC of metal). Changes in the bioavailability of the metals upon application of carbon sorbents were observed. An increase in loosely bound metal compounds has been shown under conditions of soil contamination with metals (up to 57% of the total content). The increase in the availability of Cu in the soil was mainly due to the formation of complexed metal forms with organic matter (up to 17%). The availability of Zn was found to be associated with an increase in exchangeable (up to 21%) and specifically sorbed compounds (up to 27%). Granular activated carbon (GAC) and biochar have high sorption properties. A decrease in the content of loosely bound compounds of metals was established, especially in the most mobile forms such as exchangeable and complexed forms. The introduction of sorbents into the soil opened up a new venue for binding heavy metals in situ, eventually leading to a decrease in their bioavailability. The inactivation of Cu and Zn in the soil upon the application of sorbents led to a decrease in metal absorption by spring barley. The highest efficiency of biochar application was established at a dose of 2.5% and 5% in soil contaminations of 5 APC and 10 APC of Cu or Zn. The efficiency of the use of sorbents was more influenced by the dose of application than by the type of sorbent. There was no significant difference between biochar and GAC. Stabilization and inactivation of metals may improve soil fertility and plant growth.


Sign in / Sign up

Export Citation Format

Share Document