Detection of Biomedical Images by Using Bio-inspired Artificial Intelligent

2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.

2019 ◽  
Vol 9 (1) ◽  
pp. 88-95
Author(s):  
Henny Dwi Bhakti

Kualitas mahasiswa merupakan bagian penting dalam institusi pendidikan. Universitas perlu melakukan evaluasi performa mahasiswa untuk menjaga kualitas mahasiswa. Salah satu variabel indikator performa mahasiswa adalah informasi tentang lama masa studi mahasiswa. Prediksi lama masa studi dibutuhkan pihak manajemen Universitas dalam menentukan kebijakan preventif terkait pencegahan dini kasus Drop Out (DO). Artificial Neural Network (ANN) adalah suatu metode yang meniru jaringan syaraf biologis untuk mempelajari sesuatu. Salah satu implementasi ANN yang banyak digunakan adalah untuk memprediksi. Penelitian ini melakukan prediksi masa studi mahasiswa dengan menggunakan ANN dengan metode pembelajaran backpropagation. Variabel yang digunakan adalah nilai Indeks Prestasi Semester (IPS) 4 semester awal mahasiswa. Data dibagi menjadi data latih dan data uji. Dari hasil pelatihan dan pengujian didapatkan nilai Mean Square Error (MSE) dan Koefisien Relasi (R). MSE digunakan untuk melihat kesalahan rata-rata antara output jaringan dengan target. Nilai R digunakan untuk melihat kuat atau tidaknya hubungan linier antara 2 variabel. Nilai MSE dan koefisien relasi pelatihan adalah 0,016175 dan 0,94353 sedangkan nilai MSE dan koefisien relasi pengujian adalah 0,12188 dan 0,56071. Dari hasil penelitian dapat disimpulkan bahwa ANN dapat digunakan untuk memprediksi masa studi mahasiswa.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4518
Author(s):  
Hongwei Song ◽  
Ayaz Ahmad ◽  
Krzysztof Adam Ostrowski ◽  
Marta Dudek

In a fast-growing population of the world and regarding meeting consumer’s requirements, solid waste landfills will continue receiving a substantial amount of waste. The utilization of solid waste materials in concrete has gained the attention of the researchers. Ceramic waste powder (CWP) is considered to be one of the most harmful wastes for the environment, which may cause water, soil, and air pollution. The aim of this study was comprised of two phases. Phase one was based on the characterization of CWP with respect to its composition, material testing (coarse aggregate, fine aggregate, cement,) and evaluation of concrete properties both in fresh and hardened states (slump, 28 days compressive strength, and dry density). Concrete mixes were prepared in order to evaluate the compressive strength (CS) of the control mix, with partial replacement of the cement with CWP of 10 and 20% by mass of cement and 60 prepared mixes. However, phase two was based on the application of the artificial neural network (ANN) and decision tree (DT) approaches, which were used to predict the CS of concrete. The linear coefficient correlation (R2) value from the ANN model indicates better performance of the model. Moreover, the statistical check and k-fold cross validation methods were also applied for the performance confirmation of the model. The mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to confirm the model’s precision.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 324
Author(s):  
Ayaz Ahmad ◽  
Krisada Chaiyasarn ◽  
Furqan Farooq ◽  
Waqas Ahmad ◽  
Suniti Suparp ◽  
...  

To minimize the environmental risks and for sustainable development, the utilization of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does not gain more attraction because of the availability of adhered mortar on its surface, which poses a harmful effect on the properties of concrete. However, a suitable mix design for RCA enables it to reach the targeted strength and be applicable for a wide range of construction projects. The targeted strength achievement from the proposed mix design at a laboratory is also a time-consuming task, which may cause a delay in the construction work. To overcome this flaw, the application of supervised machine learning (ML) algorithms, gene expression programming (GEP), and artificial neural network (ANN) was employed in this study to predict the compressive strength of RCA-based concrete. The linear coefficient correlation (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to investigate the performance of the models. The k-fold cross-validation method was also adopted for the confirmation of the model’s performance. In comparison, the GEP model was more effective in terms of prediction by giving a higher correlation (R2) value of 0.95 as compared to ANN, which gave a value of R2 equal to 0.92. In addition, a sensitivity analysis was conducted to know about the contribution level of each parameter used to run the models. Moreover, the increment in data points and the use of other supervised ML approaches like boosting, gradient boosting, and bagging to forecast the compressive strength, would give a better response.


Author(s):  
Madhukar A. Dabhade ◽  
M. B. Saidutta ◽  
D. V. R. Murthy

Presence of phenol and phenolic compounds in various wastewaters and its harmful effects has led to the use of different treatment methods. Work on biological methods shows the use of different microorganisms and different bioreactors so as to improve the removal efficiency economically. The present work deals with the use of N. hydrocarbonoxydans (NCIM 2386), an actinomycetes, for the degradation of phenol. N. hydrocarbonoxydans was immobilized on GAC and used in a spouted bed contactor for effective contact of microorganisms and the substrate. The contactor performance was studied by varying flow rates, influent concentrations and the solids loading in the contactor. The effect of these variables on phenol degradation was investigated and modeling study was carried out using the artificial neural network (ANN). A feed forward neural network with back propagation was used for the model development. The experiments were planned as per the face centered cube design (FCCD) and used for training of the model, whereas data from four other experimental runs were used for testing and validation of the model. The network was optimized for the number of neurons based on the mean square error. The ANN model with three layers with three input neurons, eight neurons in hidden layers and one output neuron was found to predict effectively the effluent concentration for the given operating conditions in the spouted bed contactor. The mean square error was found to be 9.318e-12 for this ANN model. Also the experimental data was used to develop second order nonlinear empirical model obtained using multiple regression (MR) and the results compared with ANN using correlation coefficient (R2), average absolute error (AAE) and root mean square error (RMSE). Results show that R2, AAE and RMSE values of MR model were 0.9363, 2.085 % and 2.338 % respectively, while in case of ANN model these values were 0.9995, 0.59 % and 1.263 % respectively. This shows that ANN model prediction is better than multiple regression model prediction.


2017 ◽  
Vol 76 (9) ◽  
pp. 2413-2426 ◽  
Author(s):  
Seef Saadi Fiyadh ◽  
Mohammed Abdulhakim AlSaadi ◽  
Mohamed Khalid AlOmar ◽  
Sabah Saadi Fayaed ◽  
Ako R. Hama ◽  
...  

Abstract The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb2+. Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R2) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R2 of 0.9956 with MSE of 1.66 × 10−4. The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.


2021 ◽  
Vol 11 (4) ◽  
pp. 1885-1904
Author(s):  
Anietie Ndarake Okon ◽  
Idongesit Bassey Ansa

AbstractCalculation of water influx into petroleum reservoir is a tedious evaluation with significant reservoir engineering applications. The classical approach developed by van Everdingen–Hurst (vEH) based on diffusivity equation solution had been the fulcrum for water influx calculation in both finite and infinite-acting aquifers. The vEH model for edge-water drive reservoirs was modified by Allard and Chen for bottom-water drive reservoirs. Regrettably, these models solution variables: dimensionless influx ($$W_{{{\text{eD}}}}$$ W eD ) and dimensionless pressure ($$P_{D}$$ P D ) were presented in tabular form. In most cases, table look-up and interpolation between time entries are necessary to determine these variables, which makes the vEH approach tedious for water influx estimation. In this study, artificial neural network (ANN) models to predict the reservoir-aquifer variables $$W_{{{\text{eD}}}}$$ W eD and $$P_{D}$$ P D was developed based on the vEH datasets for the edge- and bottom-water finite and infinite-acting aquifers. The overall performance of the developed ANN models correlation coefficients (R) was 0.99983 and 0.99978 for the edge- and bottom-water finite aquifer, while edge- and bottom-water infinite-acting aquifer was 0.99992 and 0.99997, respectively. With new datasets, the generalization capacities of the developed models were evaluated using statistical tools: coefficient of determination (R2), R, mean square error (MSE), root-mean-square error (RMSE) and absolute average relative error (AARE). Comparing the developed finite aquifer models predicted $$W_{{{\text{eD}}}}$$ W eD with Lagrangian interpolation approach resulted in R2, R, MSE, RMSE and AARE of 0.9984, 0.9992, 0.3496, 0.5913 and 0.2414 for edge-water drive and 0.9993, 0.9996, 0.1863, 0.4316 and 0.2215 for bottom-water drive. Also, infinite-acting aquifer models (Model-1) resulted in R2, R, MSE, RMSE and AARE of 0.9999, 0.9999, 0.5447, 0.7380 and 0.2329 for edge-water drive, while bottom-water drive had 0.9999, 0.9999, 0.2299, 0.4795 and 0.1282. Again, the edge-water infinite-acting model predicted $$W_{{{\text{eD}}}}$$ W eD and Edwardson et al. polynomial estimated $$W_{eD}$$ W eD resulted in the R2 value of 0.9996, R of 0.9998, MSE of 4.740 × 10–4, RMSE of 0.0218 and AARE of 0.0147. Furthermore, the developed ANN models generalization performance was compared with some models for estimating $$P_{D}$$ P D . The results obtained for finite aquifer model showed the statistical measures: R2, R, MSE, RMSE and AARE of 0.9985, 0.9993, 0.0125, 0.1117 and 0.0678 with Chatas model and 0.9863, 0.9931, 0.1411, 0.3756 and 0.2310 with Fanchi equation. The infinite-acting aquifer model had 0.9999, 0.9999, 0.1750, 0.0133 and 7.333 × 10–3 with Edwardson et al. polynomial, then 0.9865, 09,933, 0.0143, 0.1194 and 0.0831 with Lee model and 0.9991, 0.9996, 1.079 × 10–3, 0.0328 and 0.0282 with Fanchi model. Therefore, the developed ANN models can predict $$W_{{{\text{eD}}}}$$ W eD and $$P_{D}$$ P D for the various aquifer sizes provided by vEH datasets for water influx calculation.


2016 ◽  
Vol 2 (11) ◽  
pp. 555-567 ◽  
Author(s):  
Samaneh Khademikia ◽  
Ali Haghizadeh ◽  
Hatam Godini ◽  
Ghodratollah Shams Khorramabadi

In this study a hybrid estimation model ANN-COA developed to provide an accurate prediction of a Wastewater Treatment Plant (WWTP). An effective strategy for detection of some output parameters tested on a hardware setup in WWTP. This model is designed utilizing Artificial Neural Network (ANN) and Cuckoo Optimization Algorithm (COA) to improve model performances; which is trained by a historical set of data collected during a 6 months operation. ANN-COA based on the difference between the measured and simulated values, allowed a quick revealing of the faults. The method could obtain the fault detection and used in solving continuous and discrete optimization problems, successfully. After constructing and modelling the method, selected performance indices including coefficient of Regression, Mean-Square Error, Root-Mean-Square Error and Aggregated Measure used to compare the obtained results. This analysis revealed that the hybrid ANN-COA model offers a higher degree of accuracy for predicting and control the WWTP.


Author(s):  
Husin Ibrahim ◽  
Abdi Hanra Sebayang ◽  
S. Dharma ◽  
A.S. Silitonga

Tulisan ini meneliti kinerja mesin diesel satu silinder menggunakan campuran bahan bakar biodiesel randu dengan solar. Tes dilakukan dengan berbagai perbandingan biodiesel-diesel (B10, B20 dan B30). Sebuah model artificial neural network (ANN) yang didasarkan pada algoritma back-propagasi standar digunakan untuk memprediksi kinerja mesin menggunakan MATLAB. Untuk memperoleh data untuk pelatihan dan pengujian yang diusulkan ANN, kecepatan mesin yang berbeda (1400-2200 rpm) dipilih sebagai parameter masukan, sedangkan kinerja mesin (BSFC dan BTE) dipilih sebagai parameter keluaran untuk ANN pemodelan dari mesin diesel. Kinerja mesin (BSFC dan BTE) ANN telah divalidasi dengan membandingkan hasil prediksi dengan hasil eksperimen. Hasil penelitian menunjukkan bahwa koefisien korelasi BSFC dan BTE masing masing adalah 0,99249 dan 0,99457. Nilai MAPE (mean absolute persentase kesalahan) BSFC dan BTE adalah 0,57467 dan 0,33424 dan root mean square (RSME) nilai di bawah 5% oleh model, yang diterima. Studi ini menunjukkan bahwa pemodelan teknik sebagai pendekatan dalam energi alternatif dapat memberikan peningkatan keuntungan dari kehandalan dalam prediksi kinerja mesin pembakaran dalam. 


2015 ◽  
Vol 27 (3) ◽  
pp. 217-225 ◽  
Author(s):  
Muhammed Yasin Çodur ◽  
Ahmet Tortum

This study presents an accident prediction model of Erzurum’s Highways in Turkey using artificial neural network (ANN) approaches. There are many ANN models for predicting the number of accidents on highways that were developed using 8 years with 7,780 complete accident reports of historical data (2005-2012). The best ANN model was chosen for this task and the model parameters included years, highway sections, section length (km), annual average daily traffic (AADT), the degree of horizontal curvature, the degree of vertical curvature, traffic accidents with heavy vehicles (percentage), and traffic accidents that occurred in summer (percentage). In the ANN model development, the sigmoid activation function was employed with Levenberg-Marquardt algorithm. The performance of the developed ANN model was evaluated by mean square error (MSE), the root mean square error (RMSE), and the coefficient of determination (R2). The model results indicate that the degree of vertical curvature is the most important parameter that affects the number of accidents on highways.


2012 ◽  
Vol 610-613 ◽  
pp. 2859-2865
Author(s):  
Jin Woo Moon ◽  
Soo Young Kim

This study aimed at developing an artificial neural network (ANN)-based temperature control method for the double skin envelope buildings. For this, control logic for opening conditions of the inner and outer surfaces’ openings as well as for cooling system’s operation was developed based on the predictive and adaptive ANN model. The parametrical optimization process for the structure and learning methods of the ANN model was conducted in terms of the number of hidden layers, the number of neurons in the hidden layers, learning rate, and moment. Then, the performance of this optimized model was tested using the similarity analysis between the predicted values from the ANN model and the measured values from the actual double skin envelope building. Analysis revealed that the developed ANN model proved its prediction accuracy and adaptability in terms of stable Root Mean Square (RMS) and Mean Square Error (MSE) values. Based on this finding, it can be concluded that the developed ANN model showed potentials to be successfully applied to the temperature controls for the double skin envelope buildings.


Sign in / Sign up

Export Citation Format

Share Document