The effect of titanium dioxide nanoparticles and salicylic acid on growth and biodiesel production potential of sunflower (Helianthus annus L.) under water stress

2021 ◽  
Vol 53 (6) ◽  
Author(s):  
Adnan Khattak ◽  
Faizan Ullah ◽  
Zabta Khan Shinwari ◽  
Sultan Mehmood
2014 ◽  
Vol 6 (6) ◽  
pp. 1759-1765 ◽  
Author(s):  
Po-Jen Tseng ◽  
Chiung-Yi Wang ◽  
Tzu-Yun Huang ◽  
Yuan-Yu Chuang ◽  
Shih-Feng Fu ◽  
...  

Colorimetric sensing of salicylic acid in tobacco leaves in situ using TiO2 NPs.


Author(s):  
Nahla S. El-Shenawy ◽  
Mohammad S. Al-Harbi ◽  
Fatimah F.E. Al hamayani

AbstractNanomaterials coating gained much concern in orthopedic implants and cosmetics. Drug combination may be a promising strategy for treating multi-factorial diseases. Titanium dioxide (TDN) nanoparticles are being widely used in many industries as well as in medicine and pharmacology. Therefore, increased human and environmental exposure can be expected, which has put TDN under toxicological scrutiny, and it is necessary to address the potential health and safety implications of nanomaterials used in nanomedicine. The toxicity of titanium oxide nanoparticles (TDN) and salicylic acid (SA) separately or in combination was studied for 21 days.The liver and kidney biomarker were determined, and hormones and oxidative stress levels were detected in mice.The intraperitoneal (i.p.) injection of TDN and SA in combination had a potential toxicological effect on major organs and hormonal homeostasis of mice. TDN and SA could antagonistically interact to affect the liver and kidney functions. No synergistic damage was observed in the liver function of mice that were treated with both TDN and SA as compared to the SA group. TDN acted as a synergistic agent to SA in the case of total cholesterol and total proteins levels. SA acted as antagonistic to the effect of TDN when injected together in mice because the effect on kidney functions is less than that predicted on the basis of the additive. The effect of co-administration of SA and TDN on the following hormones; triiodothyronine, thyroxine, estradiol II and insulin various among additive, potentiation, antagonistic and no effect, respectively as compared to TDN group. The interaction of TDN and SA was also found to induce oxidative stress as indicated by the increase in lipid peroxidation (LPO) levels. The decrease in the level of the reduced glutathione in the co-treated group indicated that there were no synergistic damages. SA and TDN co-administration could induce a potential increase in LPO levels in liver, kidney, and spleen but not in heart tissue. These results have not suggested that TDN and SA have a synergistic sub-chronic toxicity in mice after i.p. administration. SA may decrease the toxicity of TDN to some degree that could be related to the potentiation chemical reaction between SA and TDN.Our results suggested that the damage observed in mice treated with TDN and SA is organ-specific and associated with hormonal homeostasis and oxidative damage.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


Sign in / Sign up

Export Citation Format

Share Document