SUBSTANTIATION OF DESIGN SOLUTIONS FOR PASSENGER CAR BODY BEARING STRUCTURES WITH PERFORATED REINFORCING ELEMENTS
As a method of investigations there is adopted a computer mathematical modeling based on the use of a finite element method. The choice of a type and perforation parameters is connected with the problem in the large array creation of bearing structure design models of passenger car bodies. The analysis of investigations carried out in the field of multi-variation computations has shown that the most efficient investigation method is a superelement reduction. Its use allows decreasing labor and time costs for the body design model development at the expense of the initial super-element with the perforation area for a new one. The appraisal of the procedure offered on the choice of a body efficient bearing structure with the perforated profiles is carried out by the example of the body of a domestic passenger car according to the criteria of strength and assurance of the highest weight reduction of a bearing structure. In the first stage of the work there are defined types and parameters of perforation possible for use in the structure. Finite element design models of car bodies are developed. On the basis of strength computation results the reinforcing elements of the structure are offered which have a margin safety for perforation application in them. Based on the analysis of car body bearing structure there is carried out a choice of an efficient unit of a finite element model which will be used as a super-element. In the next stage of the work there are developed and computed structures of car bodies with the perforation types under consideration and with the use of superelements. The computation results have shown that maximum design stresses of car bodies for all perforation types under consideration do not exceed legitimate values. As an efficient bearing structure of a passenger car body there is adopted a car body with the sixth type of perforation ensuring the largest decrease of structure metal intensity and satisfying strength requirements. The procedure developed can be used at designing modern bearing structures of passenger car bodies having improved technical and economic values.