Fretting wear of composite ceramic coating produced on D16 aluminum-based alloy using microarc oxidation

2016 ◽  
Vol 37 (3) ◽  
pp. 268-273 ◽  
Author(s):  
L. N. Lesnevskiy ◽  
M. A. Lyakhovetskiy ◽  
S. V. Savushkina
2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Mohannad M. S. Al Bosta ◽  
Keng-Jeng Ma ◽  
Hsi-Hsin Chien

High emitter MAO ceramic coatings were fabricated on the Al 6061 alloy, using different bipolar anodic current densities, in an alkali silicate electrolyte. We found that, as the current density increased from 10.94 A/dm2 to 43.75 A/dm2, the layer thickness was increased from 10.9 μm to 18.5 μm, the surface roughness was increased from 0.79 μm to 1.27 μm, the area ratio of volcano-like microstructure was increased from 55.6% to 59.6%, the volcano-like density was decreased from 2620 mm−2 to 1420 mm−2, and the γ-alumina phase was decreased from 66.6 wt.% to 26.2 wt.%, while the α-alumina phase was increased from 3.9 wt.% to 27.6 wt.%. The sillimanite and cristobalite phases were around 20 wt.% and 9 wt.%, respectively, for 10.94 A/dm2 and approximately constant around 40 wt.% and less than 5 wt.%, respectively, for the anodic current densities 14.58, 21.88, and 43.75 A/dm2. The ceramic surface roughness and thickness slightly enhanced the IR emissivity in the semitransparent region (4.0–7.8 μm), while the existing phases contributed together to raise the emissivity in the opaque region (8.6–16.0 μm) to higher but approximately the same emissivities.


2019 ◽  
Vol 45 (10) ◽  
pp. 13242-13250 ◽  
Author(s):  
Baosong Li ◽  
Weiwei Zhang ◽  
Dandan Li ◽  
Jiajia Wang ◽  
Wei Chen ◽  
...  

2013 ◽  
Vol 39 (3) ◽  
pp. 2869-2875 ◽  
Author(s):  
Y.M. Wang ◽  
H. Tian ◽  
X.E. Shen ◽  
L. Wen ◽  
J.H. Ouyang ◽  
...  

2007 ◽  
Vol 353-358 ◽  
pp. 1733-1736 ◽  
Author(s):  
Fei Chen ◽  
Hai Zhou ◽  
Chen Chen ◽  
Fan Xiu Lu ◽  
Fan Xiu Lu

Oxidation ceramic coating was directly synthesized on LY12 aluminium alloy by micro-arc oxidation (MAO) process in Na2SiO3 electrolyte solution with the Na2WO4-KOH-Na2EDTA addition. The corrosion resistance of the coating was tested using CS300P electrochemical corrosion workshop in 3.5% NaCl solution. Using the scanning electron microscopy (SEM) and X-ray diffraction (XRD), the cross-section microstructure, the surface morphology and the phase structure of the micro-arc oxidation ceramic coating were analyzed. The results showed that the corrosion resistance of the micro-arc oxidation ceramic coating in 3.5% NaCl solution was enhanced remarkably, the corrosion velocity was obviously slowed down. The thickness of micro-arc oxidation ceramic coating was about 11μm. The final phases in the coating were found to be α-Al2O3 and γ-Al2O3. The mechanism of the oxidation ceramic coating formation was investigated too.


Sign in / Sign up

Export Citation Format

Share Document