A Continuous Monitoring system for Blood Glucose Measurements in conscious Animals without Surgery

1993 ◽  
Vol 19 (15) ◽  
pp. 1821-1849 ◽  
Author(s):  
Senshang Lin ◽  
Won-Pa Kim ◽  
Yie W. Chien
Diabetes Care ◽  
2004 ◽  
Vol 27 (2) ◽  
pp. 478-483 ◽  
Author(s):  
H.-S. Kwon ◽  
J.-H. Cho ◽  
H.-S. Kim ◽  
B.-R. Song ◽  
S.-H. Ko ◽  
...  

2004 ◽  
Vol 349 (1-2) ◽  
pp. 135-141 ◽  
Author(s):  
Ken-Shwo Dai ◽  
Der-Yan Tai ◽  
Ping Ho ◽  
Chien-Chih Chen ◽  
Wen-Chung Peng ◽  
...  

2001 ◽  
Author(s):  
John Donelson ◽  
Wayne M. Zavis ◽  
S. K. (John) Punwani ◽  
Monique Ferguson Stewart ◽  
Mark C. Edwards

Abstract Science Applications International Corporation (SAIC) and Wilcoxon Research have developed a real-time on-board condition monitoring system for freight trains. The Office of Research and Development of the Federal Railroad Administration funded the development of the system. The system monitors bearings, wheels, trucks and brakes on freight trains in order to detect equipment defects and derailments. The objectives of the system are to improve railroad safety and operation efficiency through continuous monitoring of mechanical components on freight trains.


2009 ◽  
Vol 46 (6) ◽  
pp. 45-48
Author(s):  
李树珉 Li Shumin ◽  
刘斌 Liu Bin ◽  
孙长库 Sun Changku ◽  
赵玉梅 Zhao Yumei

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3758
Author(s):  
Hsing-Cheng Yu ◽  
Ming-Yang Tsai ◽  
Yuan-Chih Tsai ◽  
Jhih-Jyun You ◽  
Chun-Lin Cheng ◽  
...  

Recently, environmental pollution resulting from industrial waste has been emerging in an endless stream. The industrial waste contains chemical materials, heavy metal ions, and other toxic materials. Once the industrial waste is discharged without standards, it might lead to water or environmental pollution. Hence, it has become more important to provide evidence-based water quality monitoring. The use of a multifunctional miniaturized water quality monitoring system (WQMS), that contains continuous monitoring, water quality monitoring, and wireless communication applications, simultaneously, is infrequent. Thus, electrodes integrated with polydimethylsiloxane flow channels were presented in this study to be a compound sensor, and the sensor can be adopted concurrently to measure temperature, pH, electrical conductivity, and copper ion concentration, whose sensitivities are determined as 0.0193 °C/mV, −0.0642 pH/mV, 1.1008 mS/V·cm (from 0 mS/cm to 2 mS/cm) and 1.1975 mS/V·cm (from 2 mS/cm to 5.07 mS/cm), and 0.0111 ppm/mV, respectively. A LoRa shield connected into the system could provide support as a node of long range wide area network (LoRaWAN) for wireless communication application. As mentioned above, the sensors, LoRa, and circuit have been integrated in this study to a continuous monitoring system, WQMS. The advantages of the multifunctional miniaturized WQMS are low cost, small size, easy maintenance, continuous sampling and long-term monitoring for many days. Every tested period is 180 min, and the measured rate is 5 times per 20 min. The feedback signals of the miniaturized WQMS and measured values of the instrument were obtained to compare the difference. In the measured results at three different place-to-place locations the errors of electrical conductivity are 0.051 mS/cm, 0.106 mS/cm, and 0.092 mS/cm, respectively. The errors of pH are 0.68, 0.87, and 0.56, respectively. The errors of temperature are 0.311 °C, 0.252 °C, and 0.304 °C, respectively. The errors of copper ion concentration are 0.051 ppm, 0.058 ppm, 0.050 ppm, respectively.


Sign in / Sign up

Export Citation Format

Share Document