Basal Forebrain Lesions with or without Reserpine Injection Inhibit Cortical Reorganization in Rat Hindpaw Primary Somatosensory Cortex following Sciatic Nerve Section

1991 ◽  
Vol 8 (4) ◽  
pp. 327-346 ◽  
Author(s):  
Harry H. Webster ◽  
Uwe-Karsten Hanisch ◽  
Robert W. Dykes ◽  
Dietmar Biesoldt
2009 ◽  
Vol 10 (8) ◽  
pp. 854-859 ◽  
Author(s):  
Nuutti Vartiainen ◽  
Erika Kirveskari ◽  
Katariina Kallio-Laine ◽  
Eija Kalso ◽  
Nina Forss

2005 ◽  
Vol 94 (1) ◽  
pp. 501-511 ◽  
Author(s):  
Peter W. Hickmott

Peripheral denervation causes significant changes in the organization of developing or adult primary somatosensory cortex (S1). However, the basic mechanisms that underlie reorganization are not well understood. Most attention has been focused on possible synaptic mechanisms associated with reorganization. However, another important determinant of cortical circuit function is the intrinsic membrane properties of neurons in the circuit. Here we document changes in the intrinsic properties of pyramidal neurons in cortical layer 2/3 in adult rat primary somatosensory cortex (S1) after varying durations of forepaw denervation. Denervation of the forepaw induced a rapid and sustained shift in the location of the border between the forepaw and lower jaw representations of adult S1 (reorganization). Coronal slices from the reorganized region were maintained in vitro and the intrinsic properties of layer 2/3 pyramidal neurons of S1 were determined using whole cell recordings. In general, passive membrane properties were not affected by denervation; however, a variety of active properties were. The most robust changes were increases in the amplitudes of the fast and medium afterhyperpolarization (AHP) and an increase in the interval between action potentials (APs). Additional changes at some durations of denervation were observed for the AP threshold. These observations indicate that changes in intrinsic properties, mostly reflecting a decrease in overall excitation, may play a role in changes in cortical circuit properties during reorganization in adult S1, and suggest a possible role for AHPs in some of those changes.


2005 ◽  
Vol 30 (5) ◽  
pp. 530-533 ◽  
Author(s):  
C. BRENNEIS ◽  
W. N. LÖSCHER ◽  
K. E. EGGER ◽  
T. BENKE ◽  
M. SCHOCKE ◽  
...  

We studied cortical activation patterns by functional MRI in a patient who received bilateral hand transplantation after amputation 6 years ago and in a patient who had received unilateral hand replantation within 2 hours after amputation. In the early postoperative period, the patient who had had the hand transplantation revealed strong activation of a higher motor area, only weak activation of the primary sensorimotor motor cortex and no activation of the primary somatosensory cortex. At 1-year follow-up, a small increase in primary sensorimotor motor cortex activation was observed. Activation of the primary somatosensory cortex was only seen at the 2 year follow-up. By contrast, after hand replantation, the activation pattern was similar to that of the uninjured hand within 6 weeks. This included activation of the primary sensorimotor motor cortex, higher motor areas and primary somatosensory cortex. Transplantation after long-standing amputation results in cortical reorganization occurring over a 2-year period. In contrast, hand replantation within a few hours preserves a normal activation pattern.


Sign in / Sign up

Export Citation Format

Share Document