A Rapid Silver Staining and Destaining Technique for the Nucleolus Organizer Region

1995 ◽  
Vol 70 (6) ◽  
pp. 302-303 ◽  
Author(s):  
Pawan K. Dhar ◽  
M. R. Kumar ◽  
Satish Nayak ◽  
T. Ramesh Rao ◽  
Anita Joseph ◽  
...  
Genome ◽  
1993 ◽  
Vol 36 (1) ◽  
pp. 157-161 ◽  
Author(s):  
Kent M. Reed

Paternal sex ratio (PSR) is a B chromosome found in the parasitic wasp Nasonia vitripennis. PSR has a unique etiology in that it destroys the paternal chromosomes of fertilized eggs, resulting in the production of all male families. This study examined structural aspects of PSR including size, C-banding, and silver staining. PSR was found to constitute approximately 5.7% of the genome of carrier males. C-banding confirmed the heterochromatic nature of PSR and the data suggest that PSR remains primarily condensed throughout the cell cycle. Examination of prometaphase spermatocytes revealed a secondary constriction on PSR. The constriction, however, did not stain positive for nucleolus organizer activity. During mitosis, PSR and the pericentromeric regions of the A chromosomes displayed a temporal pattern of silver staining, involving dense precipitation of silver prior to metaphase. This reaction is indicative of a protein complex specific to the heterochromatin of these regions. The implications of these findings to the origin of PSR are discussed.Key words: Nasonia vitripennis, paternal sex ratio, B chromosome, nucleolus organizer region, heterochromatin.


1985 ◽  
Vol 5 (11) ◽  
pp. 2943-2950
Author(s):  
V N Dhar ◽  
D A Miller ◽  
O J Miller

Mouse rDNA can initiate transcription by using only Chinese hamster cell components, and this is associated with nucleolus organizer activity. To demonstrate this, we transferred a 3.2-kilobase segment of mouse rDNA containing the promoter, the transcription initiation site, and part of the external transcribed spacer to dihydrofolate reductase-deficient Chinese hamster cells by cotransformation with an abbreviated mouse dhfr gene. Stepwise selection for methotrexate resistance produced sublines in which the mouse rDNA was usually coamplified with the donor dhfr DNA and occupied the same site or sites in the hamster genome, as shown by in situ hybridization. Transcription from mouse rDNA was demonstrated in two such lines, and S1 protection mapping indicated faithful initiation of the transcript. In some cells from both lines, the chromosome segments containing amplified mouse rDNA showed multiple silver-staining regions (i.e., active nucleolus organizers). Although the transferred mouse rDNA was able to use the rDNA transcriptional machinery of the Chinese hamster, the level of transcription was much lower than expected from the rDNA copy number, and a large fraction of each amplified region showed no silver staining. Since the absence of silver staining is generally correlated with the absence of transcription, many copies of the amplified mouse rDNA may have been in a chromatin conformation in which they could not be transcribed. This was not associated with the extensive methylation seen in other amplified, inactive rDNA sequences.


1985 ◽  
Vol 5 (11) ◽  
pp. 2943-2950 ◽  
Author(s):  
V N Dhar ◽  
D A Miller ◽  
O J Miller

Mouse rDNA can initiate transcription by using only Chinese hamster cell components, and this is associated with nucleolus organizer activity. To demonstrate this, we transferred a 3.2-kilobase segment of mouse rDNA containing the promoter, the transcription initiation site, and part of the external transcribed spacer to dihydrofolate reductase-deficient Chinese hamster cells by cotransformation with an abbreviated mouse dhfr gene. Stepwise selection for methotrexate resistance produced sublines in which the mouse rDNA was usually coamplified with the donor dhfr DNA and occupied the same site or sites in the hamster genome, as shown by in situ hybridization. Transcription from mouse rDNA was demonstrated in two such lines, and S1 protection mapping indicated faithful initiation of the transcript. In some cells from both lines, the chromosome segments containing amplified mouse rDNA showed multiple silver-staining regions (i.e., active nucleolus organizers). Although the transferred mouse rDNA was able to use the rDNA transcriptional machinery of the Chinese hamster, the level of transcription was much lower than expected from the rDNA copy number, and a large fraction of each amplified region showed no silver staining. Since the absence of silver staining is generally correlated with the absence of transcription, many copies of the amplified mouse rDNA may have been in a chromatin conformation in which they could not be transcribed. This was not associated with the extensive methylation seen in other amplified, inactive rDNA sequences.


1996 ◽  
Vol 250 (1) ◽  
pp. 123-128
Author(s):  
Georg Haberer ◽  
Thilo C. Fischer ◽  
Ramón A. Torres-Ruiz

Science ◽  
1979 ◽  
Vol 205 (4403) ◽  
pp. 308-310 ◽  
Author(s):  
RH Myers ◽  
DA Shafer

The serendipitous mating of a male gibbon, Hylobates moloch, and a female siamang, Symphalangus syndactylus, has produced two female offspring born 1 year apart. The hybrid karyotype of 47 chromosomes comprises the haploid complements of the parental species, 22 for the gibbon and 25 for the siamang. Chromosomal G and C banding comparisons revealed no clear homologies between the parental karyotypes except for the single chromosome in each species containing the nucleolus organizer region. The lack of homology suggests that the structural rearrangement of chromosomes has played a major role in the process of speciation for these lesser apes.


1988 ◽  
Vol 51 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Jennifer A. Marshall Graves ◽  
Garey W. Dawson

SummaryIn marsupials, X chromosome inactivation is paternal and incomplete. The tissue-specific pattern of inactivation of X-linked loci (G6PD, PGK, GLA) has been attributed to a piecemeal inactivation of different regions of the X. We here propose an alternative hypothesis, in which inactivation of the marsupial X is a chromosome-wide event, but is differentially regulated in different tissues. This hypothesis was suggested by the relationship between the positions and activity of genes on the kangaroo paternal X. In the absence of an HPRT polymorphism, we have used somatic cell hybridization to assess the activity of the paternal HPRT allele in lymphocytes and fibroblasts. The absence of the paternal X, and of the paternal forms of G6PD or PGK, from 33 cell hybrids made by fusing HPRT-deficient rodent cells with lymphocytes or fibroblasts of heterozygous females, suggests that the HPRT gene on the paternal X is inactive in both tissues and therefore not selectable. Since HPRT is located medially on the Xq near GLA, which shares the same characteristics of activity, we suggest that the locus-specific and tissue-specific patterns of activity result from a differential spread of inactivation from a single control locus, located near HPRT and GLA, outwards in both directions to G6PD and PGK. The nucleolus organizer region on the short arm does not seem to be part of the inactivated unit.


Sign in / Sign up

Export Citation Format

Share Document