scholarly journals Synthesis of Epoxidizedcardanol from CNSL Vietnam by Glacial Acetic Acid and Hydrogen Peroxide

2017 ◽  
Vol Volume-1 (Issue-6) ◽  
pp. 1271-1275
Author(s):  
Bach Trong Phuc ◽  
Vu Van Hai ◽  
Nguyen Thi Hien | Nguyen Thanh Liem ◽  
2003 ◽  
Vol 81 (2) ◽  
pp. 156-160 ◽  
Author(s):  
Tian Zhu ◽  
Hou-min Chang ◽  
John F Kadla

A new method for the preparation of peroxymonophosphoric acid (H3PO5) has been developed. It utilizes a biphasic solution to moderate the vigorous reaction between phosphorous pentoxide (P2O5) and hydrogen peroxide (H2O2). P2O5 is suspended in carbon tetrachloride (CCl4), and concentrated H2O2 is slowly added while being vigorously stirred at low temperature. Careful control of the reaction temperature through the slow addition of H2O2 is critical. Using typical preparation conditions (P2O5:H2O2 = 0.5:1, H2O2 70 wt %, 2°C, 120–180 min), ~70% of the H2O2 is effectively converted to H3PO5. Increasing the concentration of H2O2, as well as the mole ratio of P2O5:H2O2, leads to an even higher % conversion of H2O2 to H3PO5. The addition of glacial acetic acid to the P2O5:H2O2 suspension at the end of the 120–180 min reaction (P2O5:H2O2:CH3COOH = 0.5:1:0.3) leads to the formation of peracetic acid in addition to H3PO5, and to an overall increase in the conversion ratio of total peroxy acids based on H2O2 (>95%).Key words: peroxymonophosphoric acid, synthesis, stability, conversion ratio.


ACS Omega ◽  
2020 ◽  
Vol 5 (12) ◽  
pp. 6389-6394
Author(s):  
Yingjie Zhang ◽  
Guanqun Gong ◽  
Honglei Zheng ◽  
Xin Yuan ◽  
Liangwei Xu

1959 ◽  
Vol 37 (2) ◽  
pp. 366-369 ◽  
Author(s):  
Paul E. Gagnon ◽  
Brian T. Newbold

A series of dihalogenated and five tetrachloroazobenzenes were oxidized to the corresponding azoxy compounds by means of 30% hydrogen peroxide in glacial acetic acid, the reaction being carried out at about 60–70 °C, for 24 hoursAs expected, the yields, in general, obtained from azobenzenes containing substituents in the 2,2′-positions were lower than those from compounds having substituents in the 3,3′- and 4,4′-positions, which gave very good results.


2008 ◽  
Vol 5 (s1) ◽  
pp. 1063-1068 ◽  
Author(s):  
Yogesh Dixit ◽  
Rahul Dixit ◽  
Naveen Gautam ◽  
D. C. Gautam

The present communication deals with the synthesis of a series of fluorinated 10H-phenothiazines. 10H-phenothiazines is prepared by Smiles rearrangement of substituted 2-foramido-2´-nitrodiphenylsulfide. Substituted 2-foramido-2´-nitrodiphenylsulfide were obtained by the reaction of 2-amino-3-fluorobenzenethiol witho-halonitrobenzenes followed by formylation and 1-nitro/1-halo-10H-phenothiazines have been prepared by the reaction of substituted 2-aminobenzenethiols with reactiveo-halonitrobenzene containing a nitro group or halogen atom ato-position to the reactive halogen atom directly yielded 1-nitro/1-halo-10H-phenothiazines in situ. 10H-phenothiazine sulfone derivatives have been synthesized by the oxidation of 10H-phenothiazines by 30% hydrogen peroxide in glacial acetic acid. The structure of the synthesized compounds has been characterized by spectroscopic data and elemental analysis. Antimicrobial studies of the synthesized compounds have also been included.


Author(s):  
Ferra Naidir ◽  
Robiah Yunus ◽  
Irmawati Ramli ◽  
Tinia I. Mohd. Ghazi

To improve the oxidative stability of the palm oil-based biolubricant, the fatty acid double bonds in palm oil-based trimethylolpropane ester (TMP ester) was converted into an oxirane ring via an in-situ epoxidation method. The epoxidized TMP ester was produced from a reaction between TMP ester and peracetic acid which was prepared in-situ by reacting glacial acetic acid with hydrogen peroxide in the presence of concentrated sulphuric acid. The response surface methodology was applied using a central composite design technique to optimize the conditions of the epoxidation reaction to produce the epoxidized TMP ester. The effects of four independent variables namely concentration of acetic acid (0-2 mol), concentration of hydrogen peroxide (1.5-9.5 mol), temperature of reaction (30-110°C) and reaction time (0.5-26.5 h) on the three dependent variables; percentage of oxirane oxygen, iodine value, and hydroxyl value were studied. A second-order polynomial multiple regression model was employed to predict the three dependent variables under optimum conditions of 0.59 mol of glacial acetic acid, 7.5 mol of hydrogen peroxide concentration, at temperature of 50°C and reaction times of 7 h. The optimum values of percentage of oxirane oxygen, iodine value, and hydroxyl value were 4.01%, 1.94%, and 0.43% respectively. The analysis of variance yielded a high coefficient of determination value of 0.9395-0.9880, hence indicating the fitness of the second-order regression model to the experimental data.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Xiangzheng Hu ◽  
Na Feng ◽  
Jiaqi Zhang

New extraction technology of chenodeoxycholic acid from duck bile paste by calcium salt was investigated. The optimum conditions of extraction were determined by orthogonal experimental design. The results indicated that influencing factors on the extraction efficiency of chenodeoxycholic acid were as follows: hydrogen peroxide, methyl alcohol, glacial acetic acid, and calcium chloride. The optimum extracting conditions of chenodeoxycholic acid were 1000 mL amount of methyl alcohol, 50 mL amount of hydrogen peroxide, 500 mL amount of 20% calcium chloride, and 600 mL amount of 60% glacial acetic acid for a quantity of duck paste. The yield of chenodeoxycholic acid was 30%.


1934 ◽  
Vol 7 (3) ◽  
pp. 454-461
Author(s):  
G. F. Bloomfield ◽  
E. H. Farmer

Abstract Mair and Todd (J. Chem. Soc., 1932,, 386), in extending the earlier work of Robertson and Mair (J. Soc. Chem. Ind., 46, 41T (1927)), studied the interaction of a chloroform solution of purified rubber with concentrated hydrogen peroxide (100 vols.) dissolved in glacial acetic acid; by this means they obtained a non-acidic substance of the empirical formula C50H92O16, which was unsaturated toward bromine and permanganate, and was considered to have all its oxygen present in the form of hydroxyl groups. Other workers have reported that when peracetic acid dissolved in glacial acetic acid is used in place of the hydrogen peroxide—acetic acid mixture, the products of reaction are acetylated derivatives of rubber (British Patent 369,716). These acetylated derivatives are stated to be obtainable either from solid rubber or from solutions of rubber, but no evidence as to their constitution has been advanced. Now the oxidative degradation of rubber is of considerable interest from two points of view: first, with regard to the light which it may throw on the size, structure, homogeneity, and normality of chemical behavior of the molecules of rubber; and, second, with regard to its efficacy as a means of transforming rubber into derivatives of similar or smaller molecular weight, capable of useful application in industry. The very careful work of Mair and Todd has gone far to show that hydrogen peroxide under the conditions of their experiments attacks the unsaturated centers of the rubber molecule and effects more or less complete hydroxylation of the carbon chain; at the same time it brings about a considerable degree of degradation of the molecule. The product of Mair and Todd, however, is produced under rather restricted conditions of reaction and the reagents employed are costly; consequently the extent to which the character of the product can be modified (i. e., by controlling the degree of degradation, hydroxylation, and acetylation) is left undetermined, and the possibility of producing useful materials at a reasonably low cost by modifying the conditions of reaction and the form of reactants is left unexplored. On the other hand, the employment of peracetic acid as an oxidizing agent, though offering a theoretically elegant way of effecting hydroxylation or acetoxylation at the unsaturated centers of the rubber molecule, is not without drawbacks: the preparation of the reagent is expensive and on a large scale dangerous; moreover, in spite of the fact that it is claimed to be employable either with solutions of rubber or with solid rubber, its reaction with rubber is so vigorous that the prospect of exercising any effective control over the extent of degradation or degree of hydroxylation (acetoxylation) is greatly diminished.


1927 ◽  
Vol 23 (4) ◽  
pp. 465-465
Author(s):  
К. Usami

The author suggests the following method: take 5.0 of the test feces by eye, thoroughly grind it in a porcelain mortar with excess acetone and filter it, and the feces remaining on the filter is washed with acetone until almost discolored liquid flows out; after the acetone is squeezed with a pestle as much as possible, the feces is removed from the filter into another porcelain mortar, grinded with 20 cc. c. of a mixture of alcohol and glacial acetic acid (1 c. c. of acid to 1 c. c. of absol. alcohol), is filtered again, and 1 c. c. of the filtrate is poured into a mixture consisting of 1 c. of Leukomethyl-violett'a or Leukofuchsin with 2 drops of 3% hydrogen peroxide.


2016 ◽  
Vol 71 (5) ◽  
pp. 603-609 ◽  
Author(s):  
Konrad Schäfer ◽  
Korbinian Köhler ◽  
Franziska Baumer ◽  
Rainer Pöttgen ◽  
Tom Nilges

AbstractPb2AsxP14–x was synthesized by reacting the pnicogens in a lead melt in sealed silica ampoules. A mixture of hydrogen peroxide and glacial acetic acid removed lead from the final product. Pb2AsxP14–x represents the first lead arsenide phosphide adopting a new structure type. Systematic substitution of phosphorus by arsenic leads to the formation of Pb2AsxP14–x with x ~ 3.7, a compound with a two-dimensional arrangement of polypnictide layers, coordinated by Pb2+ cations. Pb2AsxP14–x is structurally related to PbP7 where a three-dimensional polyphosphide network is realized instead. The structure of Pb2As3.7(1)P10.3(1) was determined from single crystal X-ray diffraction data: space group P212121 (no. 19), a = 10.060(1), b = 10.500(1), c = 13.711(2) Å, and V = 1448.3(4) Å3. The structure is discussed relative to PbP7 focusing on the differences in the polyanionic substructures of the two polypnictides.


2017 ◽  
Vol 6 (3) ◽  
pp. 28-33
Author(s):  
Yenni Listiana ◽  
Hilde Rosa Tampubolon ◽  
Mersi Suriani Sinaga

Epoxy is produced from an epoxidation of vegetable oil or natural oil with au nsaturated bond. Epoxy can be applied as a stabilizer, plasticizers in polyvinyl chloride (PVC) and can be used as an antioxidant in natural rubber processing, as a surfactant, anti-corrosive additive agent in lubricants and pesticide raw materials. The purpose of this research was to evaluate epoxy production from waste cooking oil. In this research, waste cooking oil was reacted with hexane as solvent, sulfuric acid as catalyst, glacial acetic acid and hydrogen peroxide. The catalyst concentration was varied from 1.5%, 2.1%, 2.5%, 3.1% and 3.5% and the epoxidation time was varied from 60, 120, 180, 240 and 300 min. The results showed that highest epoxy yield was achieved at reaction time of 300 min and 1.5% catalyst. At that condition, the iod number was 0,96 g I2/100 g WCO, oxirane oxygen content was 1.872 and oxirane oxygen conversion was 62.259%.


Sign in / Sign up

Export Citation Format

Share Document