Electrospun Polyethene oxide-graphite composite anode for solid-state lithium-ion batteries

2018 ◽  
Author(s):  
Mikel Arrese-Igor ◽  
Norbert Radacsi

Current lithium-ion batteries are close to reaching their physicochemical energy density limit. Moreover, they present high operation risks regarding their liquid electrolyte. Solid-state batteries are a promising alternative to overcome these problems. They offer safe operation, and potentially improved energy and power density. The option of operating at higher voltages has led to the possibility of employing high capacity electrodes. In this study, the synthesis of a nanostructured anode through electrospinning was carried out. This electrode is based on polymer nanofibres with intercalated graphite particles. The effect of molecular weight, voltage, temperature and humidity has been studied for the formation of smooth and uniform nanofibres. At the optimized conditions, Polyethylene oxide (PEO)-Polyethylene glycol (PEG) nanofibres with diameters around 600 nm were successfully electrospun. The effect of graphite loading on the electrospinning of this solution was also studied. A 30% graphite particle loading in the final fibres was reached with a reproducible methodology. It was found that the electrospun graphite particles received a polymer coating during electrospinning. EDX analysis confirmed that most of the graphite particles are covered by a polymer layer, confirming this hypothesis. Even if it is unclear how this affects the behaviour of the graphite for energy storage, high graphite content was electrospun together with PEO nanofibres with a new methodology.

2021 ◽  
Author(s):  
Stephanie Poetke ◽  
Felix Hippauf ◽  
Anne Baasner ◽  
Susanne Dörfler ◽  
Holger Althues ◽  
...  

<p>Silicon carbon void structures (Si-C) are attractive anode materials for Lithium-ion batteries to cope with the volume changes of silicon during cycling. In this study, Si-C with varying Si contents (28 ‑ 37 %) are evaluated in all-solid-state batteries (ASSBs) for the first time. The carbon matrix enables enhanced performance and lifetime of the Si-C composites compared to bare silicon nanoparticles in half-cells even at high loadings of up to 7.4 mAh cm<sup>-2</sup>. In full cells with nickel-rich NCM (LiNi<sub>0.9</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub>, 210 mAh g<sup>-1</sup>), kinetic limitations in the anode lead to a lowered voltage plateau compared to NCM half-cells. The solid electrolyte (Li<sub>6</sub>PS<sub>5</sub>Cl, 3 mS cm<sup>-1</sup>) does not penetrate the Si-C void structure resulting in less side reactions and higher initial coulombic efficiency compared to a liquid electrolyte (72.7 % vs. 31.0 %). Investigating the influence of balancing of full cells using 3-electrode ASSB cells revealed a higher delithiation of the cathode as a result of the higher cut-off voltage of the anode at high n/p ratios. During galvanostatic cycling, full cells with either a low or rather high overbalancing of the anode showed the highest capacity retention of up to 87.7 % after 50 cycles. </p>


2021 ◽  
Author(s):  
Stephanie Poetke ◽  
Felix Hippauf ◽  
Anne Baasner ◽  
Susanne Dörfler ◽  
Holger Althues ◽  
...  

<p>Silicon carbon void structures (Si-C) are attractive anode materials for Lithium-ion batteries to cope with the volume changes of silicon during cycling. In this study, Si-C with varying Si contents (28 ‑ 37 %) are evaluated in all-solid-state batteries (ASSBs) for the first time. The carbon matrix enables enhanced performance and lifetime of the Si-C composites compared to bare silicon nanoparticles in half-cells even at high loadings of up to 7.4 mAh cm<sup>-2</sup>. In full cells with nickel-rich NCM (LiNi<sub>0.9</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub>, 210 mAh g<sup>-1</sup>), kinetic limitations in the anode lead to a lowered voltage plateau compared to NCM half-cells. The solid electrolyte (Li<sub>6</sub>PS<sub>5</sub>Cl, 3 mS cm<sup>-1</sup>) does not penetrate the Si-C void structure resulting in less side reactions and higher initial coulombic efficiency compared to a liquid electrolyte (72.7 % vs. 31.0 %). Investigating the influence of balancing of full cells using 3-electrode ASSB cells revealed a higher delithiation of the cathode as a result of the higher cut-off voltage of the anode at high n/p ratios. During galvanostatic cycling, full cells with either a low or rather high overbalancing of the anode showed the highest capacity retention of up to 87.7 % after 50 cycles. </p>


2015 ◽  
Vol 163 (2) ◽  
pp. A251-A254 ◽  
Author(s):  
Justin M. Whiteley ◽  
Ji Woo Kim ◽  
Daniela Molina Piper ◽  
Se-Hee Lee

Nano Energy ◽  
2015 ◽  
Vol 16 ◽  
pp. 112-121 ◽  
Author(s):  
Rui Tan ◽  
Jinlong Yang ◽  
Jiaxin Zheng ◽  
Kai Wang ◽  
Lingpiao Lin ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Atsutaka Kato ◽  
Mari Yamamoto ◽  
Futoshi Utsuno ◽  
Hiroyuki Higuchi ◽  
Masanari Takahashi

AbstractDue to their high conductivity and interface formability, sulfide electrolytes are attractive for use in high energy density all-solid-state batteries. However, electrode volume changes during charge-discharge cycling typically cause mechanical contact losses at the electrode/electrolyte interface, which leads to capacity fading. Here, to suppress this contact loss, isolated PS43- anions are reacted with iodine to prepare a sulfide polymer electrolyte that forms a sticky gel during dispersion in anisole and drying of the resulting supernatant. This polymer, featuring flexible (–P–S–S–)n chains and enhanced solubility in anisole, is applied as a lithium-ion-conductive binder in sheet-type all-solid-state batteries, creating cells with low resistance and high capacity retention.


2021 ◽  
Vol 59 (4) ◽  
pp. 247-255
Author(s):  
Sangwon Park ◽  
Jin-Woong Lee

All solid-state batteries (ASSBs) are now anticipated to be an ultimate solution to the persistent safety issues of conventional lithium-ion batteries (LIBs). Contemporary society’s expanding power demands and growing energy consumption require energy storage with greater reliability, safety and capacity, which cannot be easily achieved with current state-of-the-art liquid-electrolyte-based LIBs. In contrast, these conditions are expected to be met by implementing ASSBs with high-performance solid-state electrolytes (SSEs). In this work, we altered the microscopic structure and Li diffusional behaviors of argyrodites (Li<sub>6-x</sub>PS<sub>5-x</sub>Cl<sub>1+x</sub>), which were precisely monitored with cooling protocols. It was shown that, at the cooling speed of -3 <sup>o</sup>C·h<sup>-1</sup>, as the cooling rate decreased, impurities in Li<sub>5.5</sub>PS<sub>4.5</sub>Cl<sub>1.5</sub> such as LiCl and Li<sub>3</sub>PO<sub>4</sub> gradually diminished and eventually disappeared. At the same time, differences in the lattice sizes of Li<sub>5.5</sub>PS<sub>4.5</sub>Cl<sub>1.5</sub> crystallites gradually decreased, resulting in a single phase Li<sub>5.5</sub>PS<sub>4.5</sub>Cl<sub>1.5</sub>. It was also found that the Cl content of the 4d crystallographic sites increased, eventually contributing to the improvement in ionic conductivity. This work also revealed the effect of cooling rates on the crystallographic atomic arrangements, which became weaker as a decrease in x. The correlations between ionic conductivities and structural features were experimentally verified via XRD and solid-state NMR studies.


Author(s):  
Chuhong Wang ◽  
Koutarou Aoyagi ◽  
Tim Mueller

All-solid-state lithium-ion batteries have great potential for improved energy and power density compared to conventional lithium-ion batteries. With extensive research efforts devoted to the development of inorganic superionic conductors, lithium...


Nanoscale ◽  
2021 ◽  
Author(s):  
Mengmeng Gao ◽  
Xiaolei Wu ◽  
Shuhong Yi ◽  
Shuwei Sun ◽  
Caiyan Yu ◽  
...  

Upgrading liquid electrolytes with all-solid-state electrolytes (ASEs) or quasi-solid-state electrolytes (QSEs) for solid-state batteries (SBs) have emerged not only to address the intrinsic disadvantages of traditional liquid lithium ion batteries,...


Sign in / Sign up

Export Citation Format

Share Document