scholarly journals Infants can outperform adults in pitch and timbre perception

2020 ◽  
Author(s):  
Bonnie Lau ◽  
Andrew Oxenham ◽  
lynne werner

Adults perceive pitch with fine precision, an ability ascribed to cortical functions that are also important for speech and music perception. Infants display neural immaturity in the auditory cortex, suggesting that pitch discrimination may improve throughout infancy. In three experiments, we tested the limits of pitch and timbre perception in 66 infants and 44 adults. Contrary to expectations, we found that infants surpassed adults in detecting subtle changes in pitch in the presence of random variations in timbre, and vice versa. The results indicate high fidelity of pitch and timbre coding in infants, implying that fully mature cortical processing is not necessary for accurate discrimination of these features. The surprising superiority of infants over adults may reflect a developmental trajectory for learning natural statistical covariations between pitch and timbre that improves coding efficiency in adults, but results in degraded perceptual acuity when expectations for such covariations are violated.

2020 ◽  
Vol 63 (2) ◽  
pp. 487-498
Author(s):  
Puisan Wong ◽  
Man Wai Cheng

Purpose Theoretical models and substantial research have proposed that general auditory sensitivity is a developmental foundation for speech perception and language acquisition. Nonetheless, controversies exist about the effectiveness of general auditory training in improving speech and language skills. This research investigated the relationships among general auditory sensitivity, phonemic speech perception, and word-level speech perception via the examination of pitch and lexical tone perception in children. Method Forty-eight typically developing 4- to 6-year-old Cantonese-speaking children were tested on the discrimination of the pitch patterns of lexical tones in synthetic stimuli, discrimination of naturally produced lexical tones, and identification of lexical tone in familiar words. Results The findings revealed that accurate lexical tone discrimination and identification did not necessarily entail the accurate discrimination of nonlinguistic stimuli that followed the pitch levels and pitch shapes of lexical tones. Although pitch discrimination and tone discrimination abilities were strongly correlated, accuracy in pitch discrimination was lower than that in tone discrimination, and nonspeech pitch discrimination ability did not precede linguistic tone discrimination in the developmental trajectory. Conclusions Contradicting the theoretical models, the findings of this study suggest that general auditory sensitivity and speech perception may not be causally or hierarchically related. The finding that accuracy in pitch discrimination is lower than that in tone discrimination suggests that comparable nonlinguistic auditory perceptual ability may not be necessary for accurate speech perception and language learning. The results cast doubt on the use of nonlinguistic auditory perceptual training to improve children's speech, language, and literacy abilities.


2020 ◽  
Author(s):  
Dominique T Vuvan ◽  
Marília Nunes-Silva ◽  
Isabelle Peretz

A major theme driving research in congenital amusia is related to the modularity of this musical disorder, with two possible sources of the amusic pitch perception deficit. The first possibility is that the amusic deficit is due to a broad disorder of acoustic pitch processing that has the effect of disrupting downstream musical pitch processing, and the second is that amusia is specific to a musical pitch processing module. To interrogate these hypotheses, we performed a meta-analysis on two types of effect sizes contained within 42 studies in the amusia literature: the performance gap between amusics and controls on tasks of pitch discrimination, broadly defined, and the correlation between specifically acoustic pitch perception and musical pitch perception. To augment the correlation database, we also calculated this correlation using data from 106 participants tested by our own research group. We found strong evidence for the acoustic account of amusia. The magnitude of the performance gap was moderated by the size of pitch change, but not by whether the stimuli were composed of tones or speech. Furthermore, there was a significant correlation between an individual's acoustic and musical pitch perception. However, individual cases show a double dissociation between acoustic and musical processing, which suggests that although most amusic cases are probably explainable by an acoustic deficit, there is heterogeneity within the disorder. Finally, we found that tonal language fluency does not influence the performance gap between amusics and controls, and that there was no evidence that amusics fare worse with pitch direction tasks than pitch discrimination tasks. These results constitute a quantitative review of the current literature of congenital amusia, and suggest several new directions for research, including the experimental induction of amusic behaviour through transcranial magnetic stimulation (TMS) and the systematic exploration of the developmental trajectory of this disorder.


2020 ◽  
Vol 24 (4) ◽  
pp. 180-190
Author(s):  
Hyo Jeong Kim ◽  
Jae Hee Lee ◽  
Hyun Joon Shim

Background and Objectives: Although many studies have evaluated the effect of the digital noise reduction (DNR) algorithm of hearing aids (HAs) on speech recognition, there are few studies on the effect of DNR on music perception. Therefore, we aimed to evaluate the effect of DNR on music, in addition to speech perception, using objective and subjective measurements. Subjects and Methods: Sixteen HA users participated in this study (58.00±10.44 years; 3 males and 13 females). The objective assessment of speech and music perception was based on the Korean version of the Clinical Assessment of Music Perception test and word and sentence recognition scores. Meanwhile, for the subjective assessment, the quality rating of speech and music as well as self-reported HA benefits were evaluated. Results: There was no improvement conferred with DNR of HAs on the objective assessment tests of speech and music perception. The pitch discrimination at 262 Hz in the DNR-off condition was better than that in the unaided condition (<i>p</i>=0.024); however, the unaided condition and the DNR-on conditions did not differ. In the Korean music background questionnaire, responses regarding ease of communication were better in the DNR-on condition than in the DNR-off condition (<i>p</i>=0.029). Conclusions: Speech and music perception or sound quality did not improve with the activation of DNR. However, DNR positively influenced the listener’s subjective listening comfort. The DNR-off condition in HAs may be beneficial for pitch discrimination at some frequencies.


Author(s):  
Stefan Koelsch

During listening, acoustic features of sounds are extracted in the auditory system (in the auditory brainstem, thalamus, and auditory cortex). To establish auditory percepts of melodies and rhythms (i.e., to establish auditory “Gestalten” and auditory objects), sound information is buffered and processed in the auditory sensory memory. Musical structure is then processed based on acoustical similarities and rhythmical organization. In addition, musical structure is processed according to (implicit) knowledge about musical regularities underlying scales, melodic and harmonic progressions, and so on. These structures are based on both local and (hierarchically organized) nonlocal dependencies. This chapter reviews neural correlates of these processes, with regard to both brain-electric responses to sounds, and the neuroanatomical architecture of music perception.


2001 ◽  
Vol 86 (5) ◽  
pp. 2616-2620 ◽  
Author(s):  
Xiaoqin Wang ◽  
Siddhartha C. Kadia

A number of studies in various species have demonstrated that natural vocalizations generally produce stronger neural responses than do their time-reversed versions. The majority of neurons in the primary auditory cortex (A1) of marmoset monkeys responds more strongly to natural marmoset vocalizations than to the time-reversed vocalizations. However, it was unclear whether such differences in neural responses were simply due to the difference between the acoustic structures of natural and time-reversed vocalizations or whether they also resulted from the difference in behavioral relevance of both types of the stimuli. To address this issue, we have compared neural responses to natural and time-reversed marmoset twitter calls in A1 of cats with those obtained from A1 of marmosets using identical stimuli. It was found that the preference for natural marmoset twitter calls demonstrated in marmoset A1 was absent in cat A1. While both cortices responded approximately equally to time-reversed twitter calls, marmoset A1 responded much more strongly to natural twitter calls than did cat A1. This differential representation of marmoset vocalizations in two cortices suggests that experience-dependent and possibly species-specific mechanisms are involved in cortical processing of communication sounds.


2019 ◽  
Vol 30 (9) ◽  
pp. 1352-1361 ◽  
Author(s):  
Mireia Hernández ◽  
María-Ángeles Palomar-García ◽  
Benito Nohales-Nieto ◽  
Gustau Olcina-Sempere ◽  
Esteban Villar-Rodríguez ◽  
...  

Individual differences in the level of pleasure induced by music have been associated with the response of the striatum and differences in functional connectivity between the striatum and the auditory cortex. In this study, we tested whether individual differences in music reward are related to the structure of the striatum and the ability to discriminate pitch. We acquired a 3-D magnetization-prepared rapid-acquisition gradient-echo image for 32 musicians and 26 nonmusicians who completed a music-reward questionnaire and a test of pitch discrimination. The analysis of both groups together showed that sensitivity to music reward correlated negatively with the volume of both the caudate and nucleus accumbens and correlated positively with pitch-discrimination abilities. Moreover, musicianship, pitch discrimination, and caudate volume significantly predicted individual differences in music reward. These results are consistent with the proposal that individual differences in music reward depend on the interplay between auditory abilities and the reward network.


2015 ◽  
Vol 112 (5) ◽  
pp. 1583-1588 ◽  
Author(s):  
Sascha Frühholz ◽  
Christoph Hofstetter ◽  
Chiara Cristinzio ◽  
Arnaud Saj ◽  
Margitta Seeck ◽  
...  

We tested whether human amygdala lesions impair vocal processing in intact cortical networks. In two functional MRI experiments, patients with unilateral amygdala resection either listened to voices and nonvocal sounds or heard binaural vocalizations with attention directed toward or away from emotional information on one side. In experiment 1, all patients showed reduced activation to voices in the ipsilesional auditory cortex. In experiment 2, emotional voices evoked increased activity in both the auditory cortex and the intact amygdala for right-damaged patients, whereas no such effects were found for left-damaged amygdala patients. Furthermore, the left inferior frontal cortex was functionally connected with the intact amygdala in right-damaged patients, but only with homologous right frontal areas and not with the amygdala in left-damaged patients. Thus, unilateral amygdala damage leads to globally reduced ipsilesional cortical voice processing, but only left amygdala lesions are sufficient to suppress the enhanced auditory cortical processing of vocal emotions.


1990 ◽  
Vol 2 (3) ◽  
pp. 195-212 ◽  
Author(s):  
Mark Jude Tramo ◽  
Jamshed J. Bharucha ◽  
Frank E. Musiek

We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250–8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies during music perception do not rely on the integrity of primary auditory cortex; and (4) musical priming may be mediated by broadly tuned subcomponents of the thala-mocortical auditory system.


2014 ◽  
Vol 28 (2) ◽  
pp. 82-100 ◽  
Author(s):  
Stephan Getzmann ◽  
Jörg Lewald

Neurophysiological findings suggested that auditory and visual motion information is integrated at an early stage of auditory cortical processing, already starting in primary auditory cortex. Here, the effect of visual motion on processing of auditory motion was investigated by employing electrotomography in combination with free-field sound motion. A delayed-motion paradigm was used in which the onset of motion was delayed relative to the onset of an initially stationary stimulus. The results indicated that activity related to the motion-onset response, a neurophysiological correlate of auditory motion processing, interacts with the processing of visual motion at quite early stages of auditory analysis in the dimensions of both the time and the location of cortical processing. A modulation of auditory motion processing by concurrent visual motion was found already around 170 ms after motion onset (cN1 component) in the regions of primary auditory cortex and posterior superior temporal gyrus: Incongruent visual motion enhanced the auditory motion onset response in auditory regions ipsilateral to the sound motion stimulus, thus reducing the pattern of contralaterality observed with unimodal auditory stimuli. No modulation was found in parietal cortex nor around 250 ms after motion onset (cP2 component) in any auditory region of interest. These findings may reflect the integration of auditory and visual motion information in low-level areas of the auditory cortical system at relatively early points in time.


Sign in / Sign up

Export Citation Format

Share Document