Group Sequential Designs: A Tutorial
This tutorial illustrates how to design, analyze, and report group sequential designs. In these designs, groups of observations are collected and repeatedly analyzed, while controlling error rates. Compared to a fixed sample size design, where data is analyzed only once, group sequential designs offer the possibility to stop the study at interim looks at the data either for efficacy or futility. Hence, they provide greater flexibility and are more efficient in the sense that due to early stopping the expected sample size is smaller as compared to the sample size in the design with no interim look. In this tutorial we illustrate how to use the R package 'rpact' and the associated Shiny app to design studies that control the Type I error rate when repeatedly analyzing data, even when neither the number of looks at the data, nor the exact timing of looks at the data, is specified. Specifically for *t*-tests, we illustrate how to perform an a-priori power analysis for group sequential designs, and explain how to stop the data collection for futility by rejecting the presence of an effect of interest based on a beta-spending function. Finally, we discuss how to report adjusted effect size estimates and confidence intervals. The recent availability of accessible software such as 'rpact' makes it possible for psychologists to benefit from the efficiency gains provided by group sequential designs.