High Order Spectral Volume and Spectral Difference Methods on Unstructured Grids

2008 ◽  
Author(s):  
Ravishekar Kannan
2021 ◽  
Author(s):  
Yawei Xie ◽  
Michael G. Edwards

Abstract A novel higher resolution spectral volume method coupled with a control-volume distributed multi-Point flux approximation (CVD-MPFA) is presented on unstructured triangular grids for subsurface reservoir simulation. The flow equations involve an essentially hyperbolic convection equation coupled with an elliptic pressure equation resulting from Darcy’s law together with mass conservation. The spectral volume (SV) method is a locally conservative, efficient high-order finite volume method for convective flow. In 2D geometry, the triangular cell is subdivided into sub-cells, and the average state variables in the sub-cells are used to reconstruct a high-order polynomial in the triangular cell. The focus here is on an efficient strategy for reconstruction of both a higher resolution approximation of the convective transport flux and Darcy-flux approximation on sub-cell interfaces, which is also coupled with a discrete fracture model. The strategy involves coupling of the SV method and reconstructed CVD-MPFA fluxes at the faces of the spectral volume, to obtain an efficient finer scale higher resolution finite-volume method which solves for both the saturation and pressure. A limiting procedure based on a Barth-Jespersen type limiter is used to prevent non-physical oscillations on unstructured grids. The fine scale saturation/concentration field is then updated via the reconstructed finite volume approximation over the sub-cell control-volumes. Performance comparisons are presented for two phase flow problems on 2D unstructured meshes including fractures. The results demonstrate that the spectral-volume method achieves further enhanced resolution of flow and fronts in addition to that of achieved by the standard higher resolution method over first order upwind, while improving upon efficiency.


Author(s):  
Zihua Qiu ◽  
Min Xu ◽  
Bin Zhang ◽  
Chunlei Liang

The high-order methods is difficultly applied in various elements. The development of a 3D solver by using the spectral difference method of unstructured grids via mixed elements is presented. A mixed tri-prism and tetrahedral grid is firstly refined using one-level h-refinement to generate a hexahedral grid while keeping the curvature of wall boundaries. The SD method designed for hexahedral elements can subsequently be applied for refining the unstructured grid. Through a series of numerical tests, the present method is high-order accurate for both inviscid and viscous flows is demonstrated; the results obtained for inviscid and viscous compressible flows compare well with other published results.


Author(s):  
Eduardo Jourdan ◽  
Fábio Mallaco Moreira ◽  
Carlos Breviglieri ◽  
André Ribeiro de Barros Aguiar ◽  
João Luiz F. Azevedo

Sign in / Sign up

Export Citation Format

Share Document