scholarly journals COMPRESSIVE STRENGTH AND DEFORMATION CAPACITY OF CONCRETE-FILLED TUBULAR STUB-COLUMNS : Strength and Rotation Capactity of Concrete-filled Tubular Columns, Part 1

Author(s):  
Ben KATO
2019 ◽  
Vol 15 (1) ◽  
pp. 65-83
Author(s):  
Rana Faisal Tufail ◽  
Xiong Feng ◽  
Muhammad Zahid

Abstract The use of rubberized concrete (RuC) is an effective environmental approach to reduce the amount of scrap tires around the world. However, there are serious concerns regarding the compressive strength of RuC. This article investigates the use of externally bonded carbon fiber reinforced polymer (CFRP) jackets on RuC to develop a novel high strength and deformable CFRP confined RuC. In this study, 66 RuC cylinders were cast with 0, 10, 20, 30, 40 and 50% fine or coarse rubber to replace mineral aggregates. The RuC cylinders were then confined with one, two or three layers of CFRP jackets. The results indicated 208% high lateral strains in unconfined RuC as compared to the conventional concrete. CFRP jacketing was highly effective for enhancing the compressive strength and deformation capacity of RuC, where high compressive strength enhancement of 52 MPa and deformation capacity (317% axial strain) was achieved. The confined compressive strength test results were compared with the strength models to assess their validity for CFRP confined RuC. An analysis-oriented strength model was developed to predict the axial compressive strength of RuC confined by CFRP jackets. Overall, this study demonstrated the potential of using CFRP-confined RuC as a new structural material with improved strength and deformation.


Author(s):  
Satoshi MIYAKI ◽  
Chiaki MATSUI ◽  
Tatsuo HATATO ◽  
Terutake IMAMURA ◽  
Shigeru YOSHINO ◽  
...  

2010 ◽  
Vol 163-167 ◽  
pp. 1510-1514 ◽  
Author(s):  
Rui Pang ◽  
Shu Ting Liang ◽  
Xiao Jun Zhu ◽  
Yao Meng

Detailed formation of precast floor slab connectors has significant effect on their shear capacity, but there is no such specific provision on it at present. The effects of detailed formations on the shear strength, stiffness and deformation capacity of hairpin connectors(HPC) were studied, through numerical simulation analysis under in-plane shear force. The imbedded depth (d), slug length (h), steel plate thickness (t) and its stickout(s) were taken as parameters. The analysis results show that: ⅰ) the increase of imbedded depth can improve the bearing capacity and stiffness of HPC, but decrease the deformation capacity; ⅱ) with the increase of slug length, the HPC strength, stiffness and deformation capacity raised a lot; ⅲ) the steel plates’ thickness has small effect on the stiffness, but has strong impact on the strength and deformation capacity of HPC. ⅳ) the stickout can affect the initial stiffness and yield strength of HPC slightly, but has a considerable impact on its ultimate strength and deformation capacity. On the basis of analysis, recommendations on formation details of HPC are proposed for design and construction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Suresh Kumar Arunachalam ◽  
Muthukannan Muthiah ◽  
Kanniga Devi Rangaswamy ◽  
Arunkumar Kadarkarai ◽  
Chithambar Ganesh Arunasankar

Purpose Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and chemical attacks in more dangerous environments. Like standard concrete, GPC also has low tensile strength and deformation capacity. This paper aims to analyse the utilization of incinerated bio-medical waste ash (IBWA) combined with ground granulated blast furnace slag (GGBS) in reinforced GPC beams and columns. Medical waste was produced in the health-care industry, specifically in hospitals and diagnostic laboratories. GGBS is a form of industrial waste generated by steel factories. The best option to address global warming is to reduce the consumption of Portland cement production and promote other types of cement that were not a pollutant to the environment. Therefore, the replacement in ordinary Portland cement construction with GPC is a promising way of reducing carbon dioxide emissions. GPC was produced due to an alkali-activated polymeric reaction between alumina-silicate source materials and unreacted aggregates and other materials. Industrial pollutants such as fly ash and slag were used as raw materials. Design/methodology/approach Laboratory experiments were performed on three different proportions (reinforced cement concrete [RCC], 100% GGBS as an aluminosilicate source material in reinforced geopolymer concrete [GRGPC] and 30% replacement of IBWA as an aluminosilicate source material for GGBS in reinforced geopolymer concrete [IGRGPC]). The cubes and cylinders for these proportions were tested to find their compressive strength and split tensile strength. In addition, beams (deflection factor, ductility factor, flexural strength, degradation of stiffness and toughness index) and columns (load-carrying ability, stress-strain behaviour and load-deflection behaviours) of reinforced geopolymer concrete (RGPC) were studied. Findings As shown by the results, compared to Reinforced Cement Concrete (RCC) and 100% GGBS based Reinforced Geopolymer Concrete (GRGPC), 30% IBWA and 70% GGBS based Reinforced Geopolymer Concrete (IGRGPC) (30% IBWA–70% GGBS reinforced geo-polymer concrete) cubes, cylinders, beams and columns exhibit high compressive strength, tensile strength, flexural strength, load-carrying ability, ultimate strength, stiffness, ductility and deformation capacity. Originality/value All the results were based on the experiments done in this research. All the result values obtained in this research are higher than the theoretical values.


2018 ◽  
Vol 22 (2) ◽  
pp. 427-443 ◽  
Author(s):  
Jiepeng Liu ◽  
Hua Song ◽  
Yuanlong Yang

A total of 11 L-shaped multi-cell concrete-filled steel tubular stub columns were fabricated and researched in axial compression test. The key factors of width-to-thickness ratio D/ t of steel plates in column limb and prism compressive strength of concrete fck were investigated to obtain influence on failure mode, bearing capacity, and ductility of the specimens. The test results show that the constraint effect for concrete provided by multi-cell steel tube cannot be ignored. The ductility decreases with the increase of width-to-thickness ratio D/ t of steel plates in column limb. The bearing capacity increases and the ductility decreases with the increase in prism compressive strength of concrete fck. A finite element program to calculate concentric load–displacement curves of L-shaped multi-cell concrete-filled steel tubular stub columns was proposed and verified by the test results. A parametric analysis with the finite element program was carried out to study the influence of the steel ratio α, steel yield strength fy, prism compressive strength of concrete fck, and width-to-thickness ratio D/ t of steel plates in column limb on the stiffness, bearing capacity and ductility. Furthermore, the design method of bearing capacity was determined based on mainstream concrete-filled steel tubular codes.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Hyung-Suk Jung ◽  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Joo-Hong Chung ◽  
Chang-Sik Choi ◽  
...  

This study was conducted to evaluate the applicability of concrete-filled steel tube (CFT) columns made from high-performance construction materials. KBC2016, South Korea’s current building code, limits the maximum compressive strength of concrete at 70 MPa and the maximum yield strength of steel at 650 MPa. Similar restrictions to material properties are imposed on major composite structural design parameters in other countries worldwide. With the recent acceleration of the pace of development in the field of material technology, the compressive strength of commercial concrete has been greatly improved and the problem of low tensile strength, known to be the major limitation of concrete, is being successfully addressed by adding fiber reinforcement to concrete. Therefore, the focus of this study was to experimentally determine the strength and ductility enhancement effects, which depend on material composition. To this end, we performed concentric axial loading tests on CFT stub columns made from steel with a yield strength of 800 MPa and steel fiber-reinforced high-strength concrete. By measuring the strain at the yield point of CFT steel during the test, we could determine whether steel yields earlier than ultimate failure load of the member, which is a key design concept of composite structures. The analysis results revealed that the yield point of steel preceded that of concrete on the stress-strain curve by the concurrent action of the strain increase at the maximum strength, attributable to the high compressive strength and steel fiber reinforcement, and the strain increase induced by the confining stress of the steel tube. Additionally, we performed parametric study using ABAQUS to establish the broad applications of CFT using high-performance materials, with the width-to-thickness ratio as the main parameter. Parametric study was undertaken as experimental investigation was not feasible, and we reviewed the criteria for limiting the width-to-thickness ratio as specified in the current building code.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1434
Author(s):  
Muhammmad Faisal Javed ◽  
Haris Rafiq ◽  
Mohsin Ali Khan ◽  
Fahid Aslam ◽  
Muhammad Ali Musarat ◽  
...  

This experimental study presents concrete-filled double-skin tubular columns and demonstrates their expected advantages. These columns consist of an outer steel tube, an inner steel tube, and concrete sandwiched between two tubes. The influence of the outer-to-inner tube dimension ratio, outer tube to thickness ratio, and type of inner tube material (steel, PVC pipe) on the ultimate axial capacity of concrete-filled double-skin tubular columns is studied. It is found that the yield strength of the inner tube does not significantly affect the ultimate axial capacity of concrete-filled double-skin tubular composites. With the replacement of the inner tube of steel with a PVC pipe, on average, less than 10% strength is reduced, irrespective of size and dimensions of the steel tube. Hence, the cost of a project can be reduced by replacing inner steel tubes with a PVC pipes. Finally, the experimental results are compared with the existing design methods presented in AISC 360-16 (2016), GB51367 (2019), and EC4 (2004). It is found from the comparison that GB51367 (2019) gives better results, followed by AISC (2016) and EC4 (2004).


Sign in / Sign up

Export Citation Format

Share Document