scholarly journals Equivalence of Euler equations and torque-angular momentum relation

2021 ◽  
Vol 18 (1) ◽  
pp. 136
Author(s):  
V. Tanriverdi

Euler derived equations for rigid body rotations in the body reference frame and in the stationary reference frame by considering an infinitesimal part of the rigid body.Another derivation is possible, and it is widely used: transforming torque-angular momentum relation to the body reference frame.However, their equivalence is not shown explicitly.In this work, for a rigid body with different moments of inertia, we calculated Euler equations explicitly in the body reference frame and in the stationary reference frame and torque-angular momentum relation.We also calculated equations of motion from Lagrangian.These calculations show that all four of them are equivalent.

Author(s):  
Huailong Shi ◽  
Liang Wang ◽  
Ahmed A. Shabana

When a rigid body negotiates a curve, the centrifugal force takes a simple form which is function of the body mass, forward velocity, and the radius of curvature of the curve. In this simple case of rigid body dynamics, curve negotiation does not lead to Coriolis forces. In the case of a flexible body negotiating a curve, on the other hand, the inertia of the body becomes function of the deformation, curve negotiations lead to Coriolis forces, and the expression for the deformation-dependent centrifugal forces becomes more complex. In this paper, the nonlinear constrained dynamic equations of motion of a flexible body negotiating a circular curve are used to develop a systematic procedure for the calculation of the centrifugal forces during curve negotiations. The floating frame of reference (FFR) formulation is used to describe the body deformation and define the nonlinear centrifugal and Coriolis forces. The algebraic constraint equations which define the motion trajectory along the curve are formulated in terms of the body reference and elastic coordinates. It is shown in this paper how these algebraic motion trajectory constraint equations can be used to define the constraint forces that lead to a systematic definition of the resultant centrifugal force in the case of curve negotiations. The embedding technique is used to eliminate the dependent variables and define the equations of motion in terms of the system degrees of freedom. As demonstrated in this paper, the motion trajectory constraints lead to constant generalized forces associated with the elastic coordinates, and as a consequence, the elastic velocities and accelerations approach zero in the steady state. It is also shown that if the motion trajectory constraints are imposed on the coordinates of a flexible body reference that satisfies the mean-axis conditions, the centrifugal forces take the same form as in the case of rigid body dynamics. The resulting flexible body dynamic equations can be solved numerically in order to obtain the body coordinates and evaluate numerically the constraint and centrifugal forces. The results obtained for a flexible body negotiating a circular curve are compared with the results obtained for the rigid body in order to have a better understanding of the effect of the deformation on the centrifugal forces and the overall dynamics of the body.


Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


2012 ◽  
Vol 12 (06) ◽  
pp. 1250049 ◽  
Author(s):  
A. RASTI ◽  
S. A. FAZELZADEH

In this paper, multibody dynamic modeling and flutter analysis of a flexible slender vehicle are investigated. The method is a comprehensive procedure based on the hybrid equations of motion in terms of quasi-coordinates. The equations consist of ordinary differential equations for the rigid body motions of the vehicle and partial differential equations for the elastic deformations of the flexible components of the vehicle. These equations are naturally nonlinear, but to avoid high nonlinearity of equations the elastic displacements are assumed to be small so that the equations of motion can be linearized. For the aeroelastic analysis a perturbation approach is used, by which the problem is divided into a nonlinear flight dynamics problem for quasi-rigid flight vehicle and a linear extended aeroelasticity problem for the elastic deformations and perturbations in the rigid body motions. In this manner, the trim values that are obtained from the first problem are used as an input to the second problem. The body of the vehicle is modeled with a uniform free–free beam and the aeroelastic forces are derived from the strip theory. The effect of some crucial geometric and physical parameters and the acting forces on the flutter speed and frequency of the vehicle are investigated.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
T. S. Amer

In this paper, we will focus on the dynamical behavior of a rigid body suspended on an elastic spring as a pendulum model with three degrees of freedom. It is assumed that the body moves in a rotating vertical plane uniformly with an arbitrary angular velocity. The relative periodic motions of this model are considered. The governing equations of motion are obtained using Lagrange’s equations and represent a nonlinear system of second-order differential equations that can be solved in terms of generalized coordinates. The numerical solutions are investigated using the fourth-order Runge-Kutta algorithms through Matlab packages. These solutions are represented graphically in order to describe and discuss the behavior of the body at any instant for different values of the physical parameters of the body. The obtained results have been discussed and compared with some previous published works. Some concluding remarks have been presented at the end of this work. The importance of this work is due to its numerous applications in life such as the vibrations that occur in buildings and structures.


1978 ◽  
Vol 33 (10) ◽  
pp. 1133-1150
Author(s):  
Eberhard Kern

The spin operator s = (ħ/2) σ in the Pauli equation fulfills the commutation relation of the angular momentum and leads to half-integer eigenvalues of the eigenfunctions for s. If one tries to express s by canonically conjugated operators Φ and π = (ħ/i) ∂/∂Φ the formal angular momentum term s = Φ X π fails because it leads only to whole-integer eigenvalues. However, the modification of this term in the form s = 1/2 {π + Φ(Φ π) + Φ X π} leads to the required result.The eigenfunction system belonging to this differential operator s(Φ π) consists of (2s + 1) spin eigenfunctions ξm (Φ) which are given explicitly. They form a basis for the wave functions of a particle of spin s. Applying this formalism to particles with s = 1/2, agreement is reached with Pauli’s spin theory.The function s(Φ π) follows from the theory of rotating rigid bodies. The continuous spinvariable Φ = ((Φx , Φy, Φz) can be interpreted classically as a “turning vector” which defines the orientation in space of a rigid body. Φ is the positioning coordinate of the rigid body or the spin coordinate of the particle in analogy to the cartesian coordinate x. The spin s is a vector fixed to the body.


Author(s):  
Himanshu Chaudhary ◽  
Subir Kumar Saha

This paper presents a study of an equimomental system and its application. The equimomental system of point-masses for a rigid body moving in plane and space system is studied. Sets of three and seven equimomental point-masses are proposed for a planar and spatial motion, respectively. The set of equimomental point-masses is then applied for the optimization of dynamic performance characteristics of a mechanism, e.g, shaking forces and moments, driving torques, bearing reactions, etc. The Newton-Euler equations of motion of a link undergoing planar motion are formulated systematically in the parameters related to the point-masses, which leads to an optimization scheme for the mass distribution of the links to improve the dynamic performances. The effectiveness of the proposed methodology is shown by applying it to a multiloop mechanism of carpet scrapping machine. A significant improvement in all the dynamic performance characteristics is obtained compared to those of the original mechanism.


Author(s):  
H. Nouiraa ◽  
J. E. Deschaud ◽  
F. Goulettea

LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. <br><br> A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. <br><br> In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. <br><br> An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.


Author(s):  
L. D. Akulenko ◽  
D. D. Leshchenko ◽  
T. A. Kozachenko

Perturbed rotations of a rigid body close to the regular precession in the Lagrangian case under the action of a restoring moment depending on slow time and nutation angle, as well as a perturbing moment slowly varying with time, are studied. The body is assumed to spin rapidly, and the restoring and perturbing moments are assumed to be small with a certain hierarchy of smallness of the components. A first approximation averaged system of equations of motion for an essentially nonlinear two-frequency system is obtained in the nonresonance case. Examples of motion of a body under the action of particular restoring, perturbing, and control moments of force are considered.


1986 ◽  
Vol 114 ◽  
pp. 35-40 ◽  
Author(s):  
T. Fukushima

The definition of the angular momentum of a finite body is given in the post-Newtonian framework. The non-rotating and the rigidly rotating proper reference frame(PRF)s attached to the body are introduced as the basic coordinate systems. The rigid body in the post-Newtonian framework is defined as the body resting in a rigidly rotating PRF of the body. The feasibility of this rigidity is assured by assuming suitable functional forms of the density and the stress tensor of the body. The evaluation of the time variation of the angular momentum in the above two coordinate systems leads to the post-Newtonian Euler's equation of motion of a rigid body. The distinctive feature of this equation is that both the moment of inertia and the torque are functions of the angular velocity and the angular acceleration. The obtained equation is solved for a homogeneous spheroid suffering no torque. The post-Newtonian correction to the Newtonian free precession is a linear combination of the second, fourth and sixth harmonics of the precessional frequency. The relative magnitude of the correction is so small as of order of 10−23 in the case of the Earth.


Author(s):  
Selima Bennaceur ◽  
Naoufel Azouz ◽  
Djaber Boukraa

This paper presents an efficient modelling of airships with small deformations moving in an ideal fluid. The formalism is based on the Updated Lagrangian Method (U.L.M.). This formalism proposes to take into account the coupling between the rigid body motion and the deformation as well as the interaction with the surrounding fluid. The resolution of the equations of motion is incremental. The behaviour of the airship is defined relatively to a virtual non-deformed reference configuration moving with the body. The flexibility is represented by a deformation modes issued from a Finite Elements Method analysis. The increment of rigid body motion is represented similarly by rigid modes. A modal synthesis is used to solve the general system equations of motion. Time constant matrices appears (i.e. mass and structural stiffness matrices), and we show a convenient technique to actualise the time dependant matrices.


Sign in / Sign up

Export Citation Format

Share Document