Fracture parameters of chevron-notched Al2O3/Nb sandwich specimens

2004 ◽  
Vol 95 (9) ◽  
pp. 779-784 ◽  
Author(s):  
Martin Bartsch ◽  
Zhe-Feng Zhang ◽  
Christina Scheu ◽  
Manfred Rühle ◽  
Ulrich Messerschmidt
Keyword(s):  
2015 ◽  
Vol 1100 ◽  
pp. 152-155
Author(s):  
Libor Topolář ◽  
Hana Šimonová ◽  
Petr Misák

This paper reports the analysis of acoustic emission signals captured during three-point bending fracture tests of concrete specimens with different mixture composition. Acoustic emission is an experimental tool well suited for monitoring fracture processes in material. The typical acoustic emission patterns were identified in the acoustic emission records for three different concrete mixtures to further describe the under-the-stress behaviour and failure development. An understanding of microstructure–performance relationships is the key to true understanding of material behaviour. The acoustic emission results are accompanied by fracture parameters determined via evaluation of load versus deflection diagrams recorded during three-point bending fracture tests.


Author(s):  
Gustavo H. B. Donato ◽  
Claudio Ruggieri

This work presents an exploratory development of J and CTOD estimation procedures for welded fracture specimens under bending based upon plastic eta factors and plastic rotation factors. The techniques considered include: i) estimating J and CTOD from plastic work and ii) estimating CTOD from the plastic rotational factor. The primary objective is to gain additional understanding on the effect of weld strength mismatch on estimation techniques to determine J and CTOD fracture parameters for a wide range of a/W-ratios and mismatch levels. Very detailed non-linear finite element analyses for plane-strain models of SE(B) fracture specimens with center cracked, square groove welds provide the evolution of load with increased load-line displacement and crack mouth opening displacement which are required for the estimation procedure. The results show that levels of weld strength mismatch within the range ±20% mismatch do not affect significantly J and CTOD estimation expressions applicable to homogeneous materials, particularly for deeply cracked fracture specimens. The present analyses, when taken together with previous studies, provide a fairly extensive body of results which serve to determine parameters J and CTOD for different materials using bend specimens with varying geometries and mismatch levels.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Bora Yıldırım ◽  
Suphi Yılmaz ◽  
Suat Kadıoğlu

The objective of this study is to investigate a particular type of crack problem in a layered structure consisting of a substrate, a bond coat, and an orthotropic functionally graded material coating. There is an internal crack in the orthotropic coating layer. It is parallel to the coating bond-coat interface and perpendicular to the material gradation of the coating. The position of the crack inside the coating is kept as a variable. Hence, the case of interface crack is also addressed. The top and bottom surfaces of the three layer structure are subjected to different temperatures and a two-dimensional steady-state temperature distribution develops. The case of compressively stressed coating is considered. Under this condition, buckling can occur, the crack can propagate, and the coating is prone to delamination. To predict the onset of delamination, one needs to know the fracture mechanics parameters, namely, Mode I and Mode II stress intensity factors and energy release rates. Hence, temperature distributions and fracture parameters are calculated by using finite element method and displacement correlation technique. Results of this study present the effects of boundary conditions, geometric parameters (crack length and crack position), and the type of gradation on fracture parameters.


Sign in / Sign up

Export Citation Format

Share Document