Concepts for In Situ Diagnostics in Analog Microelectronic Circuits

Author(s):  
Ted Kolasa ◽  
Alfredo Mendoza

Abstract Comprehensive in situ (designed-in) diagnostic capabilities have been incorporated into digital microelectronic systems for years, yet similar capabilities are not commonly incorporated into the design of analog microelectronics. And as feature sizes shrink and back end interconnect metallization becomes more complex, the need for effective diagnostics for analog circuits becomes ever more critical. This paper presents concepts for incorporating in situ diagnostic capability into analog circuit designs. Aspects of analog diagnostic system architecture are discussed as well as nodal measurement scenarios for common signal types. As microelectronic feature sizes continue to shrink, diagnostic capabilities such as those presented here will become essential to the process of fault localization in analog circuits.

Author(s):  
B.J. Cain ◽  
G.L. Woods ◽  
A. Syed ◽  
R. Herlein ◽  
Toshihiro Nomura

Abstract Time-Resolved Emission (TRE) is a popular technique for non-invasive acquisition of time-domain waveforms from active nodes through the backside of an integrated circuit. [1] State-of-the art TRE systems offer high bandwidths (> 5 GHz), excellent spatial resolution (0.25um), and complete visibility of all nodes on the chip. TRE waveforms are typically used for detecting incorrect signal levels, race conditions, and/or timing faults with resolution of a few ps. However, extracting the exact voltage behavior from a TRE waveform is usually difficult because dynamic photon emission is a highly nonlinear process. This has limited the perceived utility of TRE in diagnosing analog circuits. In this paper, we demonstrate extraction of voltage waveforms in passing and failing conditions from a small-swing, differential logic circuit. The voltage waveforms obtained were crucial in corroborating a theory for some failures inside an 0.18um ASIC.


Author(s):  
Fubin Zhang ◽  
David Maxwell

Abstract Based on the understanding of laser based techniques’ physics theory and the topology/structure of analog circuit systems with feedback loops, the propagation of laser induced voltage/current alteration inside the analog IC is evaluated. A setup connection scheme is proposed to monitor this voltage/current alteration to achieve a better success rate in finding the fail site or defect. Finally, a case of successful isolation of a high resistance via on an analog device is presented.


Author(s):  
V. A. Kurnaev ◽  
V. E. Nikolaeva ◽  
S. A. Krat ◽  
E. D. Vovchenko ◽  
A. V. Kaziev ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 349
Author(s):  
Igor Aizenberg ◽  
Riccardo Belardi ◽  
Marco Bindi ◽  
Francesco Grasso ◽  
Stefano Manetti ◽  
...  

In this paper, we present a new method designed to recognize single parametric faults in analog circuits. The technique follows a rigorous approach constituted by three sequential steps: calculating the testability and extracting the ambiguity groups of the circuit under test (CUT); localizing the failure and putting it in the correct fault class (FC) via multi-frequency measurements or simulations; and (optional) estimating the value of the faulty component. The fabrication tolerances of the healthy components are taken into account in every step of the procedure. The work combines machine learning techniques, used for classification and approximation, with testability analysis procedures for analog circuits.


2021 ◽  
Vol 104 (8) ◽  
pp. 283-292
Author(s):  
David Alexander ◽  
Jake Pellicotte ◽  
Alejandro Mejia ◽  
Caitlin Benway ◽  
Calvin Maurice Stewart ◽  
...  

2019 ◽  
Vol 146 ◽  
pp. 96-99 ◽  
Author(s):  
X. Jiang ◽  
G. Sergienko ◽  
B. Schweer ◽  
S. Möller ◽  
M. Freisinger ◽  
...  

2018 ◽  
Vol 49 (9) ◽  
pp. 4274-4289 ◽  
Author(s):  
K. Kageyama ◽  
F. Adziman ◽  
E. Alabort ◽  
T. Sui ◽  
A. M. Korsunsky ◽  
...  

1970 ◽  
Vol 1 (1) ◽  
Author(s):  
Y. M. A. Khalifa ◽  
D. H. Horrocks

An investigation into the application of Genetic Algorithms (GA) for the design of electronic analog circuits is presented in this paper. In this paper an investigation of the use of genetic algorithms into the problem of analog circuits design is presented. In a single design stage, circuits are produced that satisfy specific frequency response specifications using circuit structures that are unrestricted and with component values that are chosen from a set of preferred values. The extra degrees of freedom resulting from unbounded circuit structures create a huge search space. It is shown in this paper that Genetic Algorithms can be successfully used to search this space. The application chosen is a LC all pass ladder filter circuit design.Key Words: Computer-Aided Design, Analog Circuits, Artificial Intelligence.


Sign in / Sign up

Export Citation Format

Share Document