Residual Stress Development during Thermal Spraying of WC-Co on Titanium

Author(s):  
L. Pejyrd ◽  
J. Wigren ◽  
D.J. Greving ◽  
R.T.R. McGrann ◽  
J.R. Shadley ◽  
...  

Abstract Tungsten carbide cobalt thermal spray coatings are used in the aircraft industry to reduce wear damage of lightweight metals such as titanium The performance and life of tungsten carbide (WC-Co) coated titanium materials depend on many factors. An important factor that has received increased attention in thermal spray research is the residual stresses in the coating and substrate. Residual stresses depend on the parameters of the application process. Parameters affecting residual stresses include the prespray treatment of the substrate material (grit blasting, shot peening) and the type of spray application process (HVOF, plasma arc) During the in-service life of a WC-Co coated material, residual stresses can change significantly. The goal of this work is to quantitatively evaluate the changes in residual stresses of the substrate and the WC-Co coating during various stages of processing. A destructive laboratory method, called the "Modified Layer Removal Method," was used to evaluate the through-thickness residual stresses of the WC-Co coating and the titanium substrate material. Residual stresses are determined for three conditions: (1) shot peened, (2) shot peened and grit blasted, and (3) shot-peened, grit blasted and thermal spray coated. The changes in the residual stresses are shown at selected stages during the processing history of the coated materials. Differences between residual stress levels at selected stages are identified and discussed. The effect of coating thickness and HVOF application process on the residual stress in the coating is also examined.

Author(s):  
J. Wigren ◽  
L. Pejryd ◽  
B. Gudmundsson ◽  
R.T.R. McGrann ◽  
D.J. Greving ◽  
...  

Abstract Thermal barrier coatings are used in several industries to improve thermal efficiency, for example, of gas turbine engines. The performance and life of thermal barrier coated components depend on many factors. One important factor is the residual stresses in the coating and substrate. Residual stresses can be influenced by the parameters of the application process. Parameters affecting residual stresses include the condition of the substrate, the type of spray application process, and the prespray heat treatment of the substrate. Residual stresses can also change significantly during the life of a thermal barrier coated material. The goal of this work is to quantitatively evaluate the changes in residual stresses of the thermal barrier coating and the substrate during the stages of processing and during simulated in-service testing. Through-thickness residual stresses distributions of the coating and the substrate material were determined using a destructive laboratory method, called the "Modified Layer Removal Method." Thin thermal barrier coatings (less than 0.5 mm) were evaluated in this work. Residual stresses in thermal barrier coated specimens were evaluated at three stages of the processing history: (1) after grit blasting of the Hastelloy substrate, (2) after application of the bond coat, and (3) after spraying the top coat. The effect on residual stresses of substrate temperature during spraying is examined. Changes in the residual stresses for thin thermal barrier coatings are shown at selected stages during the processing history of the coated materials. Differences between residual stresses at the selected stages are identified and discussed. Changes to residual stress distribution due to in-service conditions are examined. The effect of bond coat oxidation is examined by long-term, high-temperature exposure. Also, residual stresses are evaluated for thick thermal barrier coatings after thermal shock testing.


Author(s):  
Sagar H. Nikam ◽  
N. K. Jain

Prediction of residual stresses induced by any additive layer manufacturing process greatly helps in preventing thermal cracking and distortion formed in the substrate and deposition material. This paper presents the development of a model for the prediction of residual stresses using three-dimensional finite element simulation (3D-FES) and their experimental validation in a single-track and double-track deposition of Ti-6Al-4V powder on AISI 4130 substrate by the microplasma transferred arc (µ-PTA) powder deposition process. It involved 3D-FES of the temperature distribution and thermal cycles that were validated experimentally using three K-type thermocouples mounted along the deposition direction. Temperature distribution, thermal cycles, and residual stresses are predicted in terms of the µ-PTA process parameters and temperature-dependent properties of substrate and deposition materials. Influence of a number of deposition tracks on the residual stresses is also studied. Results reveal that (i) tensile residual stress is higher at the bonding between the deposition and substrate and attains a minimum value at the midpoint of a deposition track; (ii) maximum tensile residual stress occurs in the substrate material at its interface with deposition track. This primarily causes distortion and thermal cracks; (iii) maximum compressive residual stress occurs approximately at mid-height of the substrate material; and (iv) deposition of a subsequent track relieves tensile residual stress induced by the previously deposited track.


1998 ◽  
Vol 7 (4) ◽  
pp. 546-552 ◽  
Author(s):  
R.T.R. McGrann ◽  
D.J. Greving ◽  
J.R. Shadley ◽  
E.F. Rybicki ◽  
B.E. Bodger ◽  
...  

Author(s):  
R.T.R. McGrann ◽  
J.R. Shadley ◽  
E.F. Rybicki ◽  
D.J. Graving ◽  
B.E. Badger ◽  
...  

Abstract Tungsten caibide (WC) thermal spray coatings are being used for wear protection on selected components of aircraft. Tungsten carbide coatings are being used on aircraft flap tracks and fan and compressor blade mid-span dampers. However, a larger use of tungsten carbide coatings is being considered for other commercial aircraft applications where it would be used as a replacement for chrome plating. For instance, WC coatings are currently being tested on aircraft landing gear parts. One factor that affects the suitability of WC coatings for these applications is the fatigue life of the coated part. Coatings, whether chrome plating or thermal spray coating, can reduce the fatigue life of the part compared to an uncoated part. This study compares the fatigue life of uncoated 6061 aluminum specimens to the fatigue life of WC thermal sprayed coated 6061 aluminum specimens. The relation between the residual stress level in the coating and the fatigue life of the specimens is also investigated. Fatigue tests were run on cantilever flat beam specimens that were coated on one side. Specimens were cycled in bending so that the coatings experienced tensile fatigue stresses. Residual stress levels for each type of coating were determined using the Modified Layer Removal Method on specimens processed along with the cantilever flat beam specimens. Test results show that the fatigue life of the WC coated specimens is directly related to the level of compressive residual stress in the coating.


Author(s):  
L. Dekhtyar ◽  
A. Kleyman ◽  
V. Andreychuk ◽  
S. Berman

Abstract Residual stresses exert profound influence on the longevity of parts with thermal spray coatings. The distribution and value of the residual stresses depend on method of coating deposition, composition of the applied material, parameters of thermal spraying and methods of post-treatment. Therefore, the study of the influence of the various technological factors on the residual stresses in the plasma spray coatings is very important. Due to heterogeneity of the coating, residual stresses can be determined only by the experimentation by using new methods which take into consideration real values of elastic characteristics and density of elementary layers. Methods and formulas for the calculations of the residual stresses in coatings deposited on bars, rings, discs, cylinders are presented. Experimental results for the various thermal spray coatings are also shown. These results can be used for the optimization of coating deposition and would supplement the existing database.


2011 ◽  
Vol 314-316 ◽  
pp. 48-52
Author(s):  
Fang Mei ◽  
Man Feng Gong

Plasma thermal spraying technique was adopted to deposit five groups of different thickness 3% TiO2-Al2O3 coatings on 329-Stainless steel. A curvature method was applied to study the residual stresses. Results showed that the deformations corresponding to 3% TiO2-Al2O3/329-SS systems were serious. The residual stress changed with the ξ (ratio of coatings’ thickness to substrate’s thickness) value and weren’t constants for the coatings’ thickness 52-306 μm. No regardless of using the Stoney’ or Tomanov’ formula to calculate the residual stresses, which decreased with the ratio ξ value increased, and the thinner coatings were, the greater the residual stresses were. The coatings’ residual stresses changed with the ξ value at an exponent relation. The coatings’ thickness affects greatly on their residual stresses, especially for the intrinsic stresses. When the coatings thickness changes from 52 to 306 μm, the residual stresses were always compressive stresses. The maximums residual stresses were caused when the ξ value is 0.115 (the minimum value), and the details were -584.96 MPa and -482.78 MPa by two difference formulas, respectively.


Author(s):  
E.F. Rybicki ◽  
J.R. Shadley ◽  
R.T.R. McGrann ◽  
A.C. Savarimuthu ◽  
D. Graving

Abstract Thermal spray coatings are subjected to mechanical loadings in many applications, and there is a need to evaluate the mechanical properties of these coatings. Mechanical properties of interest in the performance of thermal spray coatings include fatigue life, wear resistance, bond strength. Young's modulus, Poisson's ratio, and residual stresses. One property that has a large effect on the performance of thermal spray coated parts is the residual stress distribution in the thermal spray coating and in the substrate. Thus, it is important to have (1) a fundamentally sound method for evaluating residual stresses and (2) a written recommended procedure for applying the method. ASM International is not a standard writing organization. Yet, the increased use of thermal spray coatings and the need for documentation on methods for evaluating mechanical properties of thermal spray coatings have generated a need to prepare Recommended Practices. To meet this need, the ASM International Thermal Spray Society has formed three subcommittees to prepare Recommended Practices for thermal spray coatings. This paper describes a draft form of a Recommended Practice for evaluating residual stresses in thermal spray coatings. This Recommended Practice is being developed by the Subcommittee on "Evaluating of Mechanical Properties of Thermal Spray Coatings". The method, called the Modified Layer Removal Method, has been presented in several papers and has been used for a variety of different coatings. The paper describes the dimensions of the test specimen, the equipment needed, the procedure for removing layers, and the methods for collecting and interpreting the data to evaluate through thickness residual stresses. The Recommended Practice (RP) is in Draft form, but is presented to let the thermal spray community know about the RP effort and invite comments and volunteers to write other RP's.


Author(s):  
S. Tobe ◽  
Y. Andou ◽  
M. Ando ◽  
S. Kuroda ◽  
K. Akita

Abstract Microscopic and macroscopic residual stress measurements and a finite element method (FEM) for stress analysis of thermal spray coatings have been carried out to investigate the residual stress generation mechanism. The residual stresses of one splat, laminated two splats and coatings were measured by a micro-beam x-ray stress measurement system and the macroscopic residual stresses were measured in-situ by the curvature change of the thin substrate plate during and after spraying. Two coating materials were employed in this study to deposit the coatings. One is molybdenum of which the coefficient of thermal expansion (CTE) is smaller than that of steel substrate and the other is 80%Ni-20%Cr alloy which has higher CTE than steel. The substrate was preheated up to 550°C just before spraying. The residual stresses of the splat and a coating are fundamentally the same level. The FEM analysis on the residual stress was also useful and by the comparison of two measurement results of microscopic and macroscopic residual stresses, the generation mechanism was discussed.


1999 ◽  
Vol 14 (12) ◽  
pp. 4521-4530 ◽  
Author(s):  
H. M. Hu ◽  
E. J. Lavernia ◽  
Z. H. Lee ◽  
D. R. White

The objective of this work was to investigate the fundamental factors that govern the formation and magnitude of residual stresses in A2 tool steel fabricated using spray-forming techniques. To that effect, a finite-element method (FEM) was performed by using a commercial code, ABAQUS, to solve for the temperature and displacement fields. Moreover, the residual stresses in the spray-formed materials were measured using x-ray diffraction to compare the FEM results with experimentation. Two types of substrate material, copper and Rescor™ 780 cer-cast ceramic, were used to investigate the influence of heat conduction on residual stress in the preforms. Relatively good agreement was found between experimentation and theory. The results show that the residual stress varies greatly with the position in deposited preform and that heat-transfer coefficient at the interface of spray-formed material/substrate affects the distribution and magnitude of the residual stresses significantly.


DYNA ◽  
2020 ◽  
Vol 87 (215) ◽  
pp. 76-83
Author(s):  
Pedro Yáñez Contreras ◽  
Miguel León Rodríguez ◽  
José Martín Medina Flores ◽  
José Alfredo Jiménez García ◽  
Francisco Javier Santander Bastida ◽  
...  

In this work, we present the effect of the amount of CMAS infiltration into YSZ of Thermal barrier coatings (TBC) on the magnitude of residual stresses. The (TBC) were deposited by thermal spraying of CoNiCrAlY (Bond Coat-BC) and YSZ (Top Coat-TC) powders. The deposition of the BC was through the high velocity oxygen fuel (HVOF) system. The TC was deposited via an atmospheric plasma-spraying gun (APS). The TBCs were heat treated at 1250 °C, with a CMAS attack at a concentration of 10 mg/cm².The attack exposure was for 2 and 4 hours respectively. In this evaluation, the measured parameter was the magnitude of the residual stress state in Yttria Stabilized Zirconia (YSZ). The residual stress profiles were obtained using the Modified Layer Removal Method for Duplex Coatings (MRCMRB) and the Noda equations. An increase of 26.446 MPa was determined for 2 hours of thermal treatment and 30.743 MPa for 4 hours.


Sign in / Sign up

Export Citation Format

Share Document