scholarly journals Investigation bending behaviors of the slabs with glass fiber reinforced polymer composite and steel bars

2021 ◽  
Vol 4 (4) ◽  
pp. 227-238
Author(s):  
Alper Karadis ◽  
Kabil Cetin ◽  
Taha Yasin Altıok ◽  
Ali Demir

Glass fiber reinforced polymer (GFRP) composites have been frequently used in engineering applications in recent years. GFRP composites produced by using glass fiber and epoxy resin have significant advantages such as high strength, lightness, and resistance against corrosion. However, GFRP composites exhibit a more brittle behavior than steel bars. This study aims to investigate both the experimental and numerical bending behavior of slabs with GFRP bars, steel bars, and polypropylene fiber. Within the scope of experimental studies, 5 slabs were built. Two slabs called SS-1 and SS-2 have only steel bars. Two slabs called GFRPS-1 and GFRPS-2 have only GFRP composite bars. A slab called GFRPS-F has both GFRP composite bars and polypropylene fibers. Polypropylene fibers are added to fresh concrete to improve the slab’s ductility. Three-point bending tests have been carried out on the slabs. All slabs are subjected to monotonic increasing distributed loading until collapse. As a result of tests, GFRPS slabs have carried %53 higher load than SS slabs. However, the SS slabs have exhibited a more ductile behavior compared to the GFRPS slabs. GFRPS slabs have more and larger crack width than other slabs. The addition of 5% polypropylene fiber by volume to concrete has a significant contributed to ductility and tensile behavior of slab. The average displacement value of GFRPS-F slab is 22.3% larger than GFRPS slab. GFRPS-F slab has better energy consumption capacity than other slabs. The energy consumption capacity of GFRPS-F slab is 1.34 and 1.38 times that of SS and GFRPS slabs, respectively. The number of cracks in GFRPS-F slab is fewer than GFRPS slabs. The fibers have contributed to the serviceability of the GFRPS slabs by limiting the displacement and the crack width. GFRPS-F exhibits elastoplastic behavior and almost returns to its first position when the loading is stopped. In addition, experimental results are verified with numerical results obtained by using Abaqus software. Finally, it is concluded that GFRP composite bars can be safely used in field concretes, concrete roads, prefabricated panel walls, and slabs.

2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Widia Wahyuni Amir ◽  
Aidah Jumahat ◽  
Jamaluddin Mahmud

This paper presents a study on the flexural properties of glass fiber reinforced polymer composites. The epoxy-nanoclay resin was milled using a three roll mill machine to produce exfoliated structure nanocomposites. The fiber laminates specimens were manufactured by vacuum bagging system. These specimens were tested in the three point bend configuration following the ASTM D7264. The flexural modulus, flexural strength and strain to failure were then determined based on the flexural test results. The results showed that flexural modulus and flexural strength increases when a certain amount of nanoclay was included in the resin system. A maximum of 80% and 37% improvement of flexural strength and flexural modulus, respectively, were found at 5 wt% nanoclay content when compared to the neat GFRP composite. The improved properties of GFRP composites were achieved mostly due to an increase on the interfacial surface areas as well as a well-dispersion of nanoclay in the GFRP composite system. The fracture surfaces of specimens after flexural test were observed under FESEM. The results showed that the compressive failure region in the fiber was a dominant failure mechanism of the specimens due to a large compressive area on the fracture surface.


Glass fiber reinforced polymer(GFRP) composites are currently used in large numbers of diverse applications ranging from tip and engine strut fairings in aircrafts, building panels and dash boards in automotive vehicles, boat hulls in ocean vehicle structures, golf clubs and race helmets in sports equipment, etc. The service life of composite materials are influenced by the different adverse environment which leads to various failures like corrosion, fatigue, fracture, etc., results in loss of structural integrity due to environmental conditions. The investigations involved are to study the mechanical behaviour of these materials when subjected to various adverse conditions of the environment at different intervals of exposure due to change in moisture and temperature. Experiments were conducted on GFRP composites with and without exposing to different environment conditions of sea water. Tensile and flexural tests are conducted to predict the mechanical behaviour of both normal specimens and specimens exposed with sea water. Reduction in mechanical properties found due to maximum absorption of any liquid by the material. When temperature increases better in mechanical properties are noticed and at low temperature the composite behaves like a brittle.


2014 ◽  
Vol 984-985 ◽  
pp. 360-366 ◽  
Author(s):  
S. Srinivasa Moorthy ◽  
K. Manonmani ◽  
M. Sankar Kumar

Polyester based glass fiber reinforced polymer (GFRP) composites are widely used in marine and automotive industries because of its strength to weight ratio with lower price. In order to have the better properties of GFRP composites, the particulate filler material titanium oxide (TiO2) was added in unsaturated polyester resin with the fiber reinforcement by hand lay-up process. The fiber content was kept at 35 wt% constant with the fiber length of 5 cm. The particulate was varied with 2 wt. %, 4 wt. %, 6 wt. %, 8 wt. %, and 10 wt. %. Experiments were carried out to study the mechanical properties like tensile strength, impact strength, and Rockwell hardness. The chemical resistance analysis (CRA) was carried out by weight loss method. The mechanical properties of the hybrid reinforced composites were improved due to the fiber content with increased particulate content. The influence of the particulate content was more pronounced in the chemical resistance.


2018 ◽  
Vol 45 (6) ◽  
pp. 458-468 ◽  
Author(s):  
Brandon Fillmore ◽  
Pedram Sadeghian

Contribution of longitudinal glass fiber-reinforced polymer (GFRP) bars in concrete columns under compression has been ignored by current design guidelines. This paper challenges this convention by testing 21 concrete cylinders (150 mm × 300 mm) reinforced with longitudinal GFRP and steel bars in compression. It was observed that GFRP bars could sustain high level of compressive strains long after the peak load of the specimens without any premature crushing. The results of a new coupon test method showed that the elastic modulus of GFRP bars in compression is slightly higher than that of in tension, however the compressive strength was obtained 67% of tensile strength. An analytical model was successfully implemented to predict the axial capacity of the tests specimens and it was found that the contribution of the bars in the load capacity of the specimens was within 4.5–18.4% proportional to the bars reinforcement ratio normalized to the elastic modulus of steel bars.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 947
Author(s):  
Azhar Equbal ◽  
Mohammad Shamim ◽  
Irfan Anjum Badruddin ◽  
Md. Israr Equbal ◽  
Anoop Kumar Sood ◽  
...  

Glass fiber-reinforced polymer (GFRP) composites find wide applications in automobile, aerospace, aircraft and marine industries due to their attractive properties such as lightness of weight, high strength-to-weight ratio, high stiffness, good dimensional stability and corrosion resistance. Although these materials are required in a wide range of applications, their non-homogeneous and anisotropic properties make their machining troublesome and consequently restrict their use. It is thus important to study not only the machinability of these materials but also to determine optimum cutting parameters to achieve optimum machining performance. The present work focuses on turning of the GFRP composites with an aim to determine the optimal cutting parameters that yield the optimum output responses. The effect of three cutting parameters, i.e., spindle rotational speed (N), feed rate (f) and depth of cut (d) in conjunction with their interactions on three output responses, viz., Material Removal Rate (MRR), Tool Wear Rate (TWR), and Surface roughness (Ra), is studied using full factorial design of experiments (FFDE). The statistical significance of the cutting parameters and their interactions is determined using analysis of variance (ANOVA). To relate the output response and cutting parameters, empirical models are also developed. Artificial Neural Network (ANN) combined with Genetic Algorithm (GA) is employed for multi-response optimization to simultaneously optimize the MRR, TWR and Ra.


Sign in / Sign up

Export Citation Format

Share Document