scholarly journals Finite sample properties of parametric MMD estimation: Robustness to misspecification and dependence

Bernoulli ◽  
2022 ◽  
Vol 28 (1) ◽  
Author(s):  
Badr-Eddine Chérief-Abdellatif ◽  
Pierre Alquier
1992 ◽  
Vol 8 (4) ◽  
pp. 452-475 ◽  
Author(s):  
Jeffrey M. Wooldridge

A test for neglected nonlinearities in regression models is proposed. The test is of the Davidson-MacKinnon type against an increasingly rich set of non-nested alternatives, and is based on sieve estimation of the alternative model. For the case of a linear parametric model, the test statistic is shown to be asymptotically standard normal under the null, while rejecting with probability going to one if the linear model is misspecified. A small simulation study suggests that the test has adequate finite sample properties, but one must guard against over fitting the nonparametric alternative.


2013 ◽  
Vol 805-806 ◽  
pp. 1948-1951
Author(s):  
Tian Jin

The non-homogeneous Poisson model has been applied to various situations, including air pollution data. In this paper, we propose a kernel based nonparametric estimation for fitting the non-homogeneous Poisson process data. We show that our proposed estimator is-consistent and asymptotically normally distributed. We also study the finite-sample properties with a simulation study.


2015 ◽  
Vol 26 (4) ◽  
pp. 1912-1924 ◽  
Author(s):  
Jeong Youn Lim ◽  
Jong-Hyeon Jeong

We propose a cause-specific quantile residual life regression where the cause-specific quantile residual life, defined as the inverse of the cumulative incidence function of the residual life distribution of a specific type of events of interest conditional on a fixed time point, is log-linear in observable covariates. The proposed test statistic for the effects of prognostic factors does not involve estimation of the improper probability density function of the cause-specific residual life distribution under competing risks. The asymptotic distribution of the test statistic is derived. Simulation studies are performed to assess the finite sample properties of the proposed estimating equation and the test statistic. The proposed method is illustrated with a real dataset from a clinical trial on breast cancer.


2020 ◽  
pp. 1-43
Author(s):  
Torben G. Andersen ◽  
Nicola Fusari ◽  
Viktor Todorov ◽  
Rasmus T. Varneskov

In this paper, we develop the first formal nonparametric test for whether the observation errors in option panels display spatial dependence. The panel consists of options with different strikes and tenors written on a given underlying asset. The asymptotic design is of the infill type—the mesh of the strike grid for the observed options shrinks asymptotically to zero, while the set of observation times and tenors for the option panel remains fixed. We propose a Portmanteau test for the null hypothesis of no spatial autocorrelation in the observation error. The test makes use of the smoothness of the true (unobserved) option price as a function of its strike and is robust to the presence of heteroskedasticity of unknown form in the observation error. A Monte Carlo study shows good finite-sample properties of the developed testing procedure and an empirical application to S&P 500 index option data reveals mild spatial dependence in the observation error, which has been declining in recent years.


Sign in / Sign up

Export Citation Format

Share Document