scholarly journals PROCESS OPTIMIZATION OF BIODIESEL PRODUCTION FROM CRUDE COCONUT SEEDS OIL USING CAO/AL2O3 AS HETEROGENEOUS CATALYST

2020 ◽  
Vol 2 (1) ◽  
pp. 92-97
Author(s):  
Jamilu Usman ◽  
Bashar Abdullahi Hadi ◽  
Buhari Idris ◽  
Umar Musa Tanko ◽  
Bashar Usman ◽  
...  

Biodiesel is an alternative diesel fuel consisting of the alkyl monoesters of fatty acids from vegetable oils or animal fats. Biodiesel is a promising alternative fuel derived from animal fats or vegetable oil through transesterification with methanol. Base catalyzed transesterification is the most commonly used technique as it is the most economical process. Presently, a lot of heterogeneous catalysts have been formulated that are more effective than the homogeneous catalysts. CaO/Al2O3 was synthesized using incipient wetness impregnation method. The biodiesel was developed and optimized using Box-behnken response surface methodology (RSM) design provided using MINITAP-17 statistical software. The four independent variables considered are: reaction time, methanol to oil ratio, reaction temperature and catalyst concentration. The response chosen was fatty acid methyl ester (FAME) yields which were obtained from the reaction. The result from analysis of variance (ANOVA) showed a satisfactory result. Moreover, the input variables showed greater significance on the response which are reaction time and temperature base on F and P-value. The statistical models developed for predicting biodiesel yield revealed a significant agreement between the experimental and predicted values (R = 0.9686). An optimum methyl ester yield of 93.29 % was achieved with optimal conditions of methanol/oil molar ratio of 6:1, temperature of 600C, reaction time of 120 min and catalyst concentration of 1.0 wt%. The properties of the biodiesel produced also falls within the range prescribed by ASTM standard

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nichaonn Chumuang ◽  
Vittaya Punsuvon

The present study was performed to optimize a heterogeneous calcium methoxide (Ca(OCH3)2) catalyzed transesterification process assisted with tetrahydrofuran (THF) as a cosolvent for biodiesel production from waste cooking oil. Response surface methodology (RSM) with a 5-level-4-factor central composite design was applied to investigate the effect of experimental factors on the percentage of fatty acid methyl ester (FAME) conversion. A quadratic model with an analysis of variance obtained from the RSM is suggested for the prediction of FAME conversion and reveals that 99.43% of the observed variation is explained by the model. The optimum conditions obtained from the RSM were 2.83 wt% of catalyst concentration, 11.6 : 1 methanol-to-oil molar ratio, 100.14 min of reaction time, and 8.65% v/v of THF in methanol concentration. Under these conditions, the properties of the produced biodiesel satisfied the standard requirement. THF as cosolvent successfully decreased the catalyst concentration, methanol-to-oil molar ratio, and reaction time when compared with biodiesel production without cosolvent. The results are encouraging for the application of Ca(OCH3)2 assisted with THF as a cosolvent for environmentally friendly and sustainable biodiesel production.


2017 ◽  
Vol 23 (3) ◽  
pp. 367-375 ◽  
Author(s):  
Didem Özçimen ◽  
Ömer Gülyurt ◽  
Benan İnan

There is a growing interest in biodiesel as an alternative fuel for diesel engines because of the high oil prices and environmental issues related to massive greenhouse gas emissions. Nowadays, microalgal biomass has become a promising biodiesel feedstock. However, traditional biodiesel production from microalgae consumes a lot of energy and solvents. It is necessary to use an alternative method that can reduce the energy and alcohol consumption and save time. In this study, biodiesel production from Chlorella protothecoides oil by ultrasound assisted transesterification was conducted and effects of reaction parameters such as methanol:oil ratio, catalyst/oil ratio and reaction time on fatty acid methyl ester yields were investigated. The transesterification reactions were carried out by using methanol as alcohol and potassium hydroxide as the catalyst. The highest methyl ester production was obtained under the conditions of 9:1 methanol/oil mole ratio, 1.5% potassium hydroxide catalyst in oil, and for reaction time of 40 min. It was also found that catalyst/oil molar ratio was the most effective parameter on methyl ester yield according to statistical data. The results showed that ultrasound-assisted transesterification may be an alternative and cost effective way to produce biodiesel efficiently.


2014 ◽  
Vol 695 ◽  
pp. 289-292
Author(s):  
M.M. Zamberi ◽  
Farid Nasir Ani ◽  
S.N.H. Hassan

The transesterification of waste vegetable oil (WVO) with methanol in the presence of potassium hydroxide (KOH) is studied in order to produce biodiesel. All the results were evaluated using central composite design by applying a double 5 level 3 factor full factorial designs. Twenty experiments were replicated under the typical range of parameter conditions coded as x1 for oil molar ratio, x2 as catalyst concentration and x3 for reaction time. The experimental fatty acid methyl ester (FAME) are compared with the predicted FAME using RSM. The optimal predicted FAME production was obtained at 92.60%. It is specified under conditions of molar ratio 4:1 mol/mol, 0.5033 wt% catalyst concentration and reaction time of 60 minutes.


2017 ◽  
Vol 5 (3) ◽  
Author(s):  
Rokhsana M. Ismail

Jatropha as an non edible plant is a promising plant for biodiesel production Positive environmental impacts from the cultivation of this plant including the improvement of wasteland, sustainable employment for local people, and carbon farming. For industrial biodiesel production, homogeneous basic catalyst, including KOH, NaOH, as well as potassium and sodium alkoxides, are commonly used for the transetrification of Jatropha oils with methanol to produce fatty acid methyl ester. However the base-catalyzed process suffers from several drawbacks, such as difficulty in recycling catalyst and environmental pollution. The aim of this paper is to circumvent homogeneous process problems, attempts to use heterogeneous catalysts in the transetrification of Jatropha oils.Titanium supported MgO catalyst samples ( 10 and 20 wt % MgO loading ) were prepared by incipient wetness impregnation method and characterized using FTIR, XRF, BET and XRD techniques. These materials were tested as catalyst for the conversion of Jatropha oil to biodiesel in the presence of methanol. The effects of reaction temperature, reaction time and MgO loading on the Jatropha oil conversion have been established. It was observed that for the same reaction time and MgO loading, increasing the reaction temperature increased the biodiesel yield. For example, the oil conversion over 20% MgO/TiO2 catalyst after 60 min of reaction at 60ْ C, 150ْ C, 175ْ C, 200ْ C and 225ْ C was found to be 42,55,86,89 and 100% respectively. An increase in oil conversion was also observed when the reaction time was increased. For example, biodiesel yield of 37, 43, 50, 51, for 10% MgO/TiO2  after 15, 30, 45 and 60 min respectively were measured at 175ْ C.Catalytic properties for MgO/TiO2 solid catalyst were evaluated for the conversion of Jatropha oil to biodiesel. The effects of reaction temperature, reaction time and MgO loading on the Jatropha oil conversion have been established. It was observed that oil conversion increases with the increase in reaction temperature and reaction time. The effect of MgO loading on the Jatropha conversion was found to depend on the operating temperature. An increase in Jatropha oil conversion with an increase in MgO loading was observed at reaction temperature above 150ْC, So the cultivation of Jatropha in Yemen will improve the economic and environmental situation. In addition the researches should be continued for getting more reused catalyst with sufficient properties.


2012 ◽  
Vol 620 ◽  
pp. 335-339 ◽  
Author(s):  
M.F. Rabiah Nizah ◽  
Y.H. Taufiq-Yap ◽  
Mohd Zobir Hussein

Biodiesel is viewed as the most promising alternative fuel to replace petroleum-based diesel since it is derived from renewable sources such as animal fats, vegetable oil and grease. Out of various vegetable oil resources for biodiesel production,Jatropha curcasoil (JCO) is a viable choice for biodiesel because it is non-edible and can be grown easily in a harsh environment. In this study, Nd2O3-La2O3catalyst was prepared for transesterification of JCO with methanol, in order to evaluate its potential as a heterogeneous catalyst for biodiesel production. Under suitable transesterification condition at 210 °C with catalyst amount of 3 wt.%, methanol/oil molar ratio of 45 and reaction time for 4 h, the conversion of JCO to fatty acid methyl ester (FAME) achieved was more than 93% over Nd2O3-La2O3catalyst.


2014 ◽  
Vol 554 ◽  
pp. 500-504 ◽  
Author(s):  
Farid Nasir Ani ◽  
Ahmed Bakheit Elhameed

This paper investigated the three critical reaction parameters including catalyst concentration, microwave exit power and reaction time for the transesterification process of jatropha curcas oil using microwave irradiation. The work is an attempt to reduce the production cost of biodiesel. Similar quantities of methanol to oil molar ratio 6:1 and calcium oxide as a heterogeneous catalyst were used. The results showed that the best yield percentage 96% was obtained using 300W microwave exit power, 8 %wt CaO and 7 min. The methyl ester FAME obtained was within the standard of biodiesel fuel.


2015 ◽  
Vol 781 ◽  
pp. 655-658 ◽  
Author(s):  
Thakun Sawiwat ◽  
Somjai Kajorncheappunngam

Synthesis of biodiesel from rubber seed oil using a supercritical methanol was investigated under various reaction conditions (220 - 300°C, 80 - 180 bar) with reaction time of 1-15 min and oil:methanol molar ratio of 1:20 - 1:60. Free fatty acid methyl esters (FAMEs) content were analyzed by gas chromatography-mass spectroscopy (GC-MS). Most properties of produced biodiesel were in good agreement with biodiesel standard (EN 14214). The maximum FAME yield of 86.90% was obtained at 260°C, 160 bar, 5 min reaction time using oil:methanol molar ratio of 1:40. The result showed the acid value of rubber seed oil decreased to 0.58 mgKOH/g from initial 24 mgKOH/g to. It could be concluded from this findings that crude rubber seed oil is a promising alternative raw material for biodiesel synthesis via supercritical methanol tranesterification.


2014 ◽  
Vol 692 ◽  
pp. 133-138
Author(s):  
Athitan Timyamprasert ◽  
Vittaya Punsuvon ◽  
Kasem Chunkao ◽  
Juan L. Silva ◽  
Tae Jo Kim

The aim of this research was to develop a two-step technique to prepare biodiesel from waste palm oil (WPO) with high free fatty acid content. The developed process consists of esterification and transesterification steps. Response surface methodology (RSM) was applied for investigating the experimental design for esterification step. Design of experiment was performed by application of 5-levels-3-factors central composite design in order to study the optimum condition for decreasing FFA in WPO. The WPO with low FFA was further experimented in transesterification step to obtain fatty acid methyl ester (FAME). The investigated results showed that the WPO containing 48.62%wt of high FFA. The optimum condition of esterification step was 28 moles of methanol to FFA in WPO molar ratio, 5.5% sulfuric acid concentration in 90 min of reaction time and 60 °C of reaction temperature. After transesterification step, WPO biodiesel gave methyl ester content at 84.05% according to EN 14103 method. The properties of WPO methyl ester meet the standards of Thailand community biodiesel that can be used as fuel in agricultural machine.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-10 ◽  
Author(s):  
O. S. Aliozo ◽  
L. N. Emembolu ◽  
O. D. Onukwuli

Abstract In this research work, melon oil was used as feedstock for methyl ester production. The research was aimed at optimizing the reaction conditions for methyl ester yield from the oil. Response surface methodology (RSM), based on a five level, four variable central composite designs (CCD)was used to optimize and statistically analyze the interaction effect of the process parameter during the biodiesel production processes. A total of 30 experiments were conducted to study the effect of methanol to oil molar ratio, catalyst weight, temperature and reaction time. The optimal yield of biodiesel from melon oil was found to be 94.9% under the following reaction conditions: catalyst weight - 0.8%, methanol to oil molar ratio - 6:1, temperature - 55°C and reaction time of 60mins. The quality of methyl ester produced at these conditions was within the American Society for Testing and Materials (ASTM D6751) specification.


2016 ◽  
Vol 723 ◽  
pp. 610-615 ◽  
Author(s):  
Natta Pimngern ◽  
Vittaya Punsuvon

Crude coconut oil with high free fatty acid (FFA) content was used as a raw material to produce biodiesel. In this work, the esterification followed by transesterification of crude coconut oil with methanol is studied. The response surface methodology (RSM) with 5-level-3-factor central composite design (CCD) was applied to study the effect of different factors on the FFA content of esterification and the percentage of fatty acid methyl ester (FAME) conversion of transesterification. The FAME conversion was detected by proton magnetic resonance (1H-NMR) spectrometer. As a result, the optimum conditions for esterification were 6:1 of methanol-to-oil molar ratio, 0.75wt% of sulfuric acid (H2SO4) concentration and 90 min of reaction time. The optimum conditions for transesterification were 8.23:1 of methanol-to-oil molar ratio, 0.75wt% of sodium hydroxide (NaOH) concentration and 80 min of reaction time. Quadratic model equations were obtained describing the relationships between dependents and independent variables to minimize the FFA content and maximize the FAME conversion. Fuel properties of the crude coconut oil biodiesel were also examined followed ASTM and EN standards. The results showed that all properties met well with both standards.


Sign in / Sign up

Export Citation Format

Share Document