scholarly journals EVALUATION OF THE APPLICATION OF COGENERATION UNITS IN BOILERS

2021 ◽  
Vol 1 (73) ◽  
pp. 36-40
Author(s):  
M. Koroli

In the global energy sector, there is a steady trend towards an increase in the production and consumption of energy. As the analysis of the technology has shown, mini-Thermal Power Plants (TPP) are one of the key solutions to the problem. The construction, as well as the reconstruction of existing boiler houses in the mini-TPP will not only ensure more efficient use of fuel through the combined production of electric and thermal energy, but also improve the reliability of power supply to settlements and industrial enterprises

2021 ◽  
Vol 72 (7) ◽  
pp. 89-92
Author(s):  
M.M. Zamaleev ◽  
Yu.V. Zhukova ◽  
A.V. Abramov ◽  
Yu.R. Abaidullina

This article discusses the problem of introducing more resource-intensive methods of generating electricity and heat, the main of which is the use of small-sized gas turbine units (GTU). The creation of a Mini-Thermal Power Plant on the basis of the GTU allows solving the problem of the shortage of heat and electric energy in certain regions, ensuring uninterrupted power supply to the housing and communal sector and industrial enterprises. This is due to the possibility of combined production of heat and electric energy, as well as products and services required in the municipal services of the city. This article presents ways to improve the energy efficiency of thermal power plants through the use of GTU.


2019 ◽  
Vol 1 (4) ◽  
Author(s):  
Alejandro Calderón ◽  
Camila Barreneche ◽  
Anabel Palacios ◽  
Mercè Segarra ◽  
Cristina Prieto ◽  
...  

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Hui Hong ◽  
Hongguang Jin ◽  
Jun Sui ◽  
Jun Ji

Solar thermochemical processes inherently included the conversion of solar thermal energy into chemical energy. In this paper, a new mechanism of upgrading the energy level of solar thermal energy at around 200°C was revealed based on the second law thermodynamics and was then experimentally proven. An expression was derived to describe the upgrading of the energy level from low-grade solar thermal energy to high-grade chemical energy. The resulting equation explicitly reveals the interrelations of energy levels between middle-temperature solar thermal energy and methanol fuel, and identifies the interactions of mean solar flux and the reactivity of methanol decomposition. The proposed mechanism was experimentally verified by using the fabricated 5kW prototype of the receiver∕reactor. The agreement between the theoretical and the experimental results proves the validity of the mechanism for upgrading the energy level of low-grade solar thermal energy by integrating clean synthetic fuel. Moreover, the application of this new middle-temperature solar∕methanol hybrid thermochemical process into a combined cycle is expected to have a net solar-to-electric efficiency of about 27.8%, which is competitive with other solar-hybrid thermal power plants using high-temperature solar thermal energy. The results obtained here indicate the possibility of utilizing solar thermal energy at around 200°C for electricity generation with high efficiency by upgrading the energy level of solar thermal energy, and provide an enhancement to solar thermal power plants with the development of this low-grade solar thermochemical technology in the near future.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Rafael Guédez ◽  
James Spelling ◽  
Björn Laumert

The operation of steam turbine units in solar thermal power plants is very different than in conventional base-load plants. Due to the variability of the solar resource, much higher frequencies of plant start-ups are encountered. This study provides an insight to the influence of thermal energy storage (TES) integration on the typical cycling operation of solar thermal power plants. It is demonstrated that the integration of storage leads to significant reductions in the annual number of turbine starts and is thus beneficial to the turbine lifetime. At the same time, the effects of storage integration on the electricity costs are analyzed to ensure that the designs remain economically competitive. Large storage capacities, can allow the plant to be shifted from a daily starting regime to one where less than 20 plant starts occur annually. Additionally, the concept of equivalent operating hours (EOHs) is used to further analyze the direct impact of storage integration on the maintenance planning of the turbine units.


2013 ◽  
Vol 807-809 ◽  
pp. 1388-1396
Author(s):  
Wen Yong Wang ◽  
Bo Jun Ke ◽  
Gao Ping Fu

Based on a detailed survey on the source and volume of SO2 emission over Chengdu economic circle, the third-generation air quality model CMAQ is adopted for simulating the concentration of SO2 in the air over Chengdu Economic Circle. The results show that the hourly average concentration, daily average concentration and annual average concentration of SO2 in air exceed the limit of national standard, and the affected areas respectively account for 0.12%, 0.18% and 0.03% of the total area of the economic circle. Meanwhile, according to the result of calculation, the SO2 emissions of thermal power plants, chemical industry, building materials plants and industrial area sources make the largest contribution to the SO2 concentration in the air, with ratios of 36.15%, 18.67%, 11.81% and 8.34% respectively. thus,main measures to reduce emissions of SO2 in Chengdu economic circle are proposed as follows: focusing on the control of the emissions of SO2 from industrial enterprises, especially in the thermal power plants, chemical industry, building materials plants as well as industrial boilers; joint prevention and control measures should be implemented between the cities, so as to reduce the interaction caused dy emissions of SO2. With the application of the above measures, the total SO2 emissions can be reduced by 50% and the concentration of SO2 in the air can meet with the Class II of national ambient air quality Standard.


2012 ◽  
Vol 100 (2) ◽  
pp. 516-524 ◽  
Author(s):  
Doerte Laing ◽  
Carsten Bahl ◽  
Thomas Bauer ◽  
Michael Fiss ◽  
Nils Breidenbach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document