Prediction of mechanical stresses of single rotor blade of low pressure of Nasiriya power plant steam turbine

Author(s):  
Noura A.Essi ◽  
Rafid M. Hunnun ◽  
Hazim I. Radhi
Author(s):  
Satoshi Miyake ◽  
Satoru Yamamoto ◽  
Yasuhiro Sasao ◽  
Kazuhiro Momma ◽  
Toshihiro Miyawaki ◽  
...  

A numerical study simulating unsteady 3-D wet-steam flows through three-stage stator-rotor blade rows in a low-pressure steam turbine model experimentally conducted by Mitsubishi Heavy Industry (MHI) was presented in the last ASME Turbo Expo by our group. In this study, the previous discussion is extended to the discussion how nonequilibrium condensation is influenced by unsteady wakes and corner vortices from prefaced multi-stage blade rows. Unsteady 3-D flows through three-stage stator-rotor blade rows are simulated assuming nonequilibrium condensation. Flows with a different inlet flow condition are calculated and the results are compared with each other. Instantaneous condensate mass fractions are visualized at different spans and cross sections in the three-stage stator and rotor blade rows. Also the time and space dependent values are plotted and the obtained unsteady flow characteristics are explained.


2012 ◽  
Vol 134 (08) ◽  
pp. 50-50
Author(s):  
Lee S. Langston

This article describes the functioning of the gas turbine cogeneration power plant at the University of Connecticut (UConn) in Storrs. This 25-MW power plant serves the 18,000 students’ campus. It has been in operation since 2006 and is expected to save the University $180M in energy costs over its 40-year design life. The heart of the UConn cogeneration plant consists of three 7-MW Solar Taurus gas turbines burning natural gas, with fuel oil as a backup. These drive water-cooled generators to produce up to 20–24 MW of electrical power distributed throughout the campus. Gas turbine exhaust heat is used to generate up to 200,000 pounds per hour of steam in heat recovery steam generators (HRSGs). The HRSGs provide high-pressure steam to power a 4.6-MW steam turbine generator set for more electrical power and low-pressure steam for campus heating. The waste heat from the steam turbine contained in low-pressure turbine exhaust steam is combined with the HRSG low-pressure steam output for campus heating.


Author(s):  
Akihiro Uemura ◽  
Hironori Miyazawa ◽  
Takashi Furusawa ◽  
Satoru Yamamoto ◽  
Koichi Yonezawa ◽  
...  

Abstract This paper presents the effect of blade secular changes in stator and rotor blade passages on unsteady flows through the first-stage in a middle pressure steam turbine. The scales from the boilers may collide with the stator and rotor blade surfaces, and the blades could become gradually thinned or adhered over time because of the collision. The secular-changed blades influence the performance of steam turbines and may further induce unexpected accidents. Therefore, the maintenance, repair, and overhaul (MRO) of steam turbines is essential. The optimization of MRO scheduling is quite crucial for electric power companies. We simulated unsteady steam flows through an actual middle pressure steam turbine working at a coal-fired power plant while setting manufactured and secular-changed blades. The shape of the secular-changed blades was measured from actual blades during overhaul. The numerical method developed at Tohoku University was employed for the simulation. The difference in the results between the manufactured and secular-changed blades is shown, and the effect of secular changes on unsteady flows is investigated. In addition, the possibility of utilizing the results in the MRO of real turbines is highlighted.


Author(s):  
Rafid M. Hannun ◽  
Hazim I. Radhi ◽  
Noura A. Essi

Introduction: In this paper, the simulation of first stage of low pressure turbine for Nasiriya Power Plant was done to study the aerodynamic characteristic of steam along stage at load 70 MW, also the two types of mechanical stresses on the first stage rotor blade were studied in this paper. Materials and Methods:The material of blade was X20Cr13 stainless steel grade 1.4021. The first type of mechanical stresses which due to the steam pressure on the blade was analyzed. The seconds types of mechanical stresses that the centrifugal stresses on the blade. The AutoCAD software code was used for modeling the turbine stage, the dimensions and operational conditions were obtained practically from Nasiriya power plant and ANSYS (15.0) software was used to make simulate the turbine. Results and Discussion: The results showed that maximum steam velocity occurred at trailing edge of stationary blades and leading edge of rotating blades, also the maximum stresses occurred at the leading edge and trailing edge of root blade, the stresses due to the effect of centrifugal force is larger than the stresses due the pressure force. Conclusions: The maximum deformation occurred at tip of blade and minimum deformation depicted at root of blade.


Author(s):  
Stephen R. Reid ◽  
James B. Lewis

Much of the world’s Steam Turbine Generator fleet was commissioned well over 40 years ago. These turbine generator sets have had many in-service issues leading to poor reliability and in some cases, requiring full turbine and generator replacements. On the turbine side, most issues, as documented by EPRI surveys, have been related to the low pressure turbines. Discovery of issues during planned shutdown inspections such as rotor shaft cracking, stress corrosion cracking (SCC) of dovetails, and blade reliability concerns can be addressed without the costly replacement of the full rotor/blade components. This paper will review and provide actual case studies of methods to repair and extend the life of these components.


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 8-15
Author(s):  
Arkadiy E. Zariankin ◽  
◽  
Sergey К. Osipov ◽  
Vladislav I. Krutitsky ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document