scholarly journals CONCENTRATION OF NITRATE NITROGEN IN THE SOIL AND PRODUCTIVITY OF CROPS WHEN LONG-TERM MINIMIZING OF TILLAGE ACCORDING TO VARIOUS FORECROPS

Author(s):  
V. E. Sineshchekov ◽  
G. I. Tkachenko

In a multifactor stationary field experiment on the area of the Elitnoye Holding in the Novosibirsk region (central forest-steppe subzone) in 2002-2018 the seasonal dynamics of nitrate nitrogen in the fields of four full grain-steam crop rotation by steam and grain predecessors against an extensive background (without chemical means) in four versions of the main mechanical treatment of leached black soil was investigated. Along with this, the productivity of grain crops was studied with long-term minimization of the main tillage on extensive and intensive backgrounds. The authors found out that in the central forest-steppe of the Ob river region before sowing grain crops according to the various methods of steam preparation most of all in the meter layer of nitrate soil was found in black steam with plowing (150 kg / ha) and less in variants with soil-protective treatments (132-141 kg / ha ). The lowest level of this element in the soil (124 kg / ha) in spring was noted by the early minimum steam. Before sowing the second wheat after steam, the nitrate nitrogen content in the meter soil layer for plowing (79 kg / ha) was slightly higher than in the options with soil treatment (61-64 kg / ha). In the final field of crop rotation, regardless of the studied soil cultivation systems, the minimum initial amount of nitrogen (56-57 kg / ha) was noted. By the end of the growing season of crops, the nitrate content in the soil was sharply reduced. Before harvesting wheat by steam, the nitrogen content in the upper meter profile was 41-55 kg / ha, for grain precursors even less - 27-33 kg / ha. The steam yield of grain crops on extensive and intensive backgrounds was 3.09-3.21 and 3.96-4.02 t / ha, respectively, and practically did not depend on the methods of its preparation. On repeated sowing the wheat yield in comparison with an extensive background in plowing (1.26-1.79 t / ha) was significantly higher than in the studied options for minimizing the main tillage (1.02-1.55 t / ha). When optimizing the mineral nutrition of plants and the phytosanitary situation of crops, wheat productivity by grain predecessors in crop rotation fields increased 2.0-2.9 times without significant differences in soil treatment options.

2021 ◽  
Vol 51 (5) ◽  
pp. 91-100
Author(s):  
V. K. Kalichkin ◽  
T. A. Luzhnykh ◽  
V. S. Riksen ◽  
N. V. Vasilyeva ◽  
V. A. Shpak

The possibilities and feasibility of using the Bayesian network of trust and logistic regression to predict the content of nitrate nitrogen in the 0-40 cm soil layer before sowing have been investigated. Data from long-term multifactor field experience at the Siberian Research Institute of Farming and Agricultural Chemization of SFSCA RAS for 2013-2018 were used to train the models. The experiment was established on leached chernozem in the central forest-steppe subzone in 1981 in the Novosibirsk region. Considering the characteristics of the statistical sample (observation and analysis data), the main predictors of the models affecting nitrate nitrogen content in soil were identified. The Bayesian trust network is constructed as an acyclic graph, in which the main (basic) nodes and their relationships are denoted. Network nodes are represented by qualitative and quantitative plot parameters (soil subtype, forecrop, tillage, weather conditions) with corresponding gradations (events). The network assigns a posteriori probability of events for the target node (nitrate-nitrogen content in the 0-40 cm soil layer) as a result of experts completing the conditional probability table, taking into account the analysis of empirical data. Two scenarios were analyzed to test the sustainability of the network and satisfactory results were obtained. The result of the logistic regression is the coefficients characterizing the closeness of the relationship between the dependent variable and the predictors. The coefficient of determination of the logistic regression is 0.7. This indicates that the quality of the model can be considered acceptable for forecasting. A comparative assessment of the predictive capabilities of the trained models is given. The overall proportion of correct predictions for the Bayesian confidence network is 84%, for logistic regression it is 87%.


2021 ◽  
Vol 36 ◽  
pp. 07001
Author(s):  
Fedor A. Popov ◽  
Evgeniya N. Noskova ◽  
Lyudmila M. Kozlova

The article presents the results of a long-term stationary three-factor experiment on sod-podzolic loamy soil to identify the effectiveness of various methods of basic and pre-sowing treatment of soil, the use of biological preparations in the technology of cultivating grain crops in six-field crop rotation. It was established that the most profitable elements of the technology in energy and economic terms will be: surface-cut treatment with KPS-4 cultivator and introduction of Azotovit and Phosphatovit biologics into the tillering stage of oat in a vetch-oat mixture for green feed; surface-cut treatment with KBM-4,2 cultivator or with pre-sowing treatment with a APPN-2,1 combined aggregate and introduction of Azotovite and Phosphatovite biological preparations into the soil before sowing winter rye for grain; ploughing with pre-sowing treatment with APPN-2,1 combined aggregate for spring wheat; surface-cut treatment with pre-sowing treatment with APPN-2,1 combined aggregate and introduction of biologic preparation based on strain Streptomyces hygroscopicus A4 at tillering stage of oat in pea-oat mixture for grain-hay; ploughing with KPS-4 cultivator and introduction of Pseudobacterin-2 biopreparation at barley tillering stage; ploughing with pre-sowing treatment with APPN-2,1 combined aggregate and introduction of biologic preparation based on strain Streptomyces hygroscopicus A4 at oat tillering stage.


2020 ◽  
Vol 161 ◽  
pp. 01103
Author(s):  
Alexey Kozhukhov ◽  
Alexander Gurin ◽  
Svetlana Rezvyakova

The article presents data on the study of the main nutrition elements in the soil under maize crops, depending on the predecessors and methods of soil treatment in the conditions of ordinary Chernozem. The object of research is a Krasnodarsky 194MV hybrid of maize. Variants: 1. Fallow arable land (control); 2. Lupine as green manure; 3. Peas as green manure; 4. Binary sowing of lupine and peas as green manure; 5. Soy as green manure. The experiment was repeated three times, field placement was randomized, and area of each was 120 m². Agrotechnics of maize cultivation in the experiment corresponded to the recommendations for this zone. Green manure was plowed in during its reproduction phase. In the variants with green mass plowing to a depth of 23–25 cm, the largest amount of nitrate nitrogen was in the soil layer 0–20 cm. In the specified soil horizon, before sowing maize, the content of nitrate nitrogen ranged, depending on the variant, from 24.7 mg/kg to 42.8 mg/kg. In the soil layer 20–40 cm, the amount of nitrogen was lower, just 19.4–29.5 mg/kg. Similar dependence was observed for maize during its flowering phase. Tillage methods had almost no effect on the accumulation of nitrate nitrogen in the upper soil layer (0–20 cm). As in all the variants, the differences in this indicator were within the experimental error. However, the content of nitrate nitrogen during the growing season was different. The greatest amount of it was observed during the spring period, both in versions with plowing to a depth of 25–28 cm and in versions with blade loosening to a depth of 10–12 cm. The smallest amount of available phosphorus, regardless of the method of soil preparation, in the layer 0–20 cm was on fallow arable land – 122 mg/kg during the sowing period and 104 mg/kg during the flowering period. In variants with cultivation of legumes as green manure, the content of available phosphorus in the specified horizon was significantly chigher, being 147–171 mg/kg. The highest content of exchangeable potassium was provided by lupine – 209–213 mg/kg in the 0–20 cm soil layer, and lupine sown together with peas – 196–207 mg/kg. The minimum amount of exchangeable potassium was 143–146 mg/kg in fallow arable land, depending on the method of soil treatment.


2013 ◽  
Vol 790 ◽  
pp. 202-205
Author(s):  
Hui Yan Gao ◽  
Lu Hua Yang ◽  
Tian Li ◽  
Zi Peng Guo

Soil moisture and nitrate nitrogen were measured respectively in planting area and non-planting area in RANZHUANG experiment station from 2011 to 2012. The effect of human activity on soil moisture and nitrate nitrogen was analyzed. The results show that soil moisture content varies from 8.61% to 30.09% within 0~250cm depth and is tended to be stable below 250cm deep layer in non-planting area. The distribution of soil nitrate nitrogen is a single peak curve, the peak moves downward at a speed of 0.81cm/d in percolation of rainfall. Soil moisture varies form 21.23% to 41.67% within 0~400cm depth and is tended to be stable below 400cm deep layer in planting area. Nitrate nitrogen is mainly accumulated at 0~100cm deep soil layer in the wheat growth period. In the maize growth period, the distribution of nitrate nitrogen is double peak curve in 0~500cm soil profile. The upper peak occurs at 40~100cm soil layer, the peak of nitrate nitrogen content is between 26.7~54.6mg/kg; the lower emerges at 150~260cm soil profile, the value is between 36.7~106.36mg/kg. Deep percolation of the nitrate nitrogen is obvious due to unreasonable irrigation and fertilization. The nitrate nitrogen content accounts for 52.3% of the total nitrate nitrogen below the root zone soil, which is a potential contamination source of groundwater.


Author(s):  

The long-term dynamic of the content and runoff of ammonia nitrogen in the water of the Middle Amur are discussed. There are decreasing of ammonia runoff in 1.4 times in comparison with 1981-2000, and dominance of nitrate nitrogen in runoff of mineral forms in recent years. Trends in runoff changes are due to transformation on the watershed. At present anthropogenic components of runoff is formed by the Songhua River runoff and is more pronounced in the wintertime.


Author(s):  
А.С. СОТПА

Проблема и цель. Целью исследований явилось изучение влияния предшественников и применения минеральных удобрений на основные элементы плодородия почвы, урожай яровой пшеницы и его качества. Методология. Для достижения цели исследования и ответа на поставленные исследовательские вопросы было проведено опытно-экспериментальное исследование. Опыты проведены в степной зоне Республики Тыва в 2019-2020 гг., на темно-каштановых, среднесуглинистых почвах, в трехпольном севообороте с короткой ротацией (чистый пар-пшеница-пшеница; чистый пар-многолетние травы-пшеница; чистый пар-овес-пшеница), бессменная пшеница, на двух фонах химизации: без применения минеральных удобрений (контроль, фон 0), с применением минеральных удобрений (фон 1). Результаты. Результаты исследований показали, что влажность почвы по чистому пару по всходам яровой пшеницы была на 16,5 % больше, чем после других предшественников. В период уборки пшеницы влажность почвы повысилась только на вариантах с применением минеральных удобрений. Выявлено, что в период вегетации пшеницы наибольшее содержание нитратного азота отмечено после многолетних трав, где азота нитратов было на 3,3-4,7 мг/кг больше, чем на контроле. Внесение минеральных удобрений способствовало росту содержания нитратного азота в почве к фазе всходов на 8,3-38,0 %, кущения и уборки – в 1,2-1,7 раза, в зависимости от различных предшественников. Заключение. В результате исследований было установлено, что высокое содержание азота в почве влияет на урожайность и продуктивность яровой пшеницы. При использовании в качестве предшественника многолетних трав средняя урожайность яровой пшеницы составляет 1,63 т/га, содержание белка в зерне – 16,6 %. Посев яровой пшеницы после овса обеспечивает получение зерна с содержанием белка – 15,4 %. Применение удобрений увеличивает урожайность пшеницы в среднем по опыту на 34,2 %. Problem and aim. By the purpose of researches was to establish infuence of the predecessors, application of mineral fertilizers on basic elements of fertility of ground, crop summer wheats and his quality. Methodology. To achieve the aim of the research and answer the questions an experimental study was carried out.The experiences are carried out in a steppe zone Republic of Тuvа in 2019-2020, on dark-chestnut, medium loamy soils, in three-feld crop rotation with short rotation (pure pairs-wheat-wheat; pure pair-longterm grass-wheat; pure pairs-oat-wheat) permanent wheat, on two chemistry backgrounds: without application of mineral fertilizers (control, background 0), with application of mineral fertilizers (background 1). Results. The results of researches have shown, that the humidity of ground till a pure pair on shoots summer wheats was on 16,5 % more, than after other predecessors. During harvest wheats the humidity of ground has raised only on variants with application of mineral fertilizers. It was found that during the growing season of wheat, the highest content of nitrate nitrogen was observed after long-term grasses where nitrite nitrogen was higher by 3,3 – 4,7 mg/kg than in the control. Is revealed, that the best predecessor ensuring nitrate by nitrogen crops summer wheats, in conditions of a steppe zone of region are the long-term grass. The entering of mineral fertilizers promoted growth of the contents nitrate of nitrogen in ground to a phase shoots on 8,3- 38,0 %, (tillering?) and harvesting - in 1,2-1,7 times, depending on the various predecessors. Conclusion. As a result of research it was found, that the high contents of nitrogen in ground infuences productivity and efciency summer wheats. At use as the predecessor of long-term grass the average productivity summer wheats makes 1,63 t/hа, contents of fber in a grain – 16,6 %. The crop summer wheats after oats provides reception of a grain with the contents of fber – 15,4 %. Application of fertilizers increases productivity wheats on the average by experience by 34,2 %


Author(s):  
O.G. Maryina-Chermnykh ◽  

long-term research on the influence of tillage techniques on the formation of the structure of the micromycete complex of sod-podzolic soil in grain crops of the Republic of Mari El has shown that in recent years there has been a progressive deterioration of its phytosanitary condition. Against the background of depletion of the biodiversity of grain agrobiocenoses, cases of epiphytotic propagation of root rot pathogens in the soil were revealed. Disking soil treatment changes the structural composition of soil microorganisms and improves the phytosanitary condition of the soil.


2018 ◽  
Vol 2 (95) ◽  
pp. 35-41
Author(s):  
S.H. Korsun ◽  
A.V. Davydiuk ◽  
V.V. Hirnyk

Purpose. Identify the features of changes in the factor of potassium capacity of dark gray soil under long-term systematic application of different doses of mineral and organic fertilizers. Methods. Field, laboratory, mathematical and statistical. Results. At various intensities of fertilizer systems and fertilizer ratios, it has been established that the long (30 years) use of organic and mineral fertilizers contributed not only to stabilization but also to the restoration of the stock of moving potassium in the arable soil layer in comparison with the initial data (1987).The growth of mobile potassium content was consistent with the increase in the agrochemical load in crop rotation. Conclusions. Long-term systematic application for 1987–2000 years mineral fertilizers in doses of 265–397 kg of NPK on the background of 10 tons of manure per 1 ha of crop rotation, in 2001–2010 years – 211–316,5 kg of NPK per 1 ha, and in 2011–2017 years – 217,5–326,4 kg of NPK per 1 ha on the background plowing crop by-products had a significant impact in the factor on the capacity factor of potassium of dark gray podzolized soil, ensuring it is elevated and very high level.


Sign in / Sign up

Export Citation Format

Share Document