scholarly journals Transtentorial transcollateral sulcus approach to the ventricular atrium: an endoscope-assisted anatomical study

2017 ◽  
Vol 126 (4) ◽  
pp. 1246-1252 ◽  
Author(s):  
Yasser Jeelani ◽  
Abdulkerim Gokoglu ◽  
Tomer Anor ◽  
Ossama Al-Mefty ◽  
Alan R. Cohen

OBJECTIVE Conventional approaches to the atrium of the lateral ventricle may be associated with complications related to direct cortical injury or brain retraction. The authors describe a novel approach to the atrium through a retrosigmoid transtentorial transcollateral sulcus corridor. METHODS Bilateral retrosigmoid craniotomies were performed on 4 formalin-fixed, colored latex–injected human cadaver heads (a total of 8 approaches). Microsurgical dissections were performed under 3× to 24× magnification, and endoscopic visualization was provided by 0° and 30° rigid endoscope lens systems. Image guidance was provided by coupling an electromagnetic tracking system with an open source software platform. Objective measurements on cortical thickness traversed and total depth of exposure were recorded. Additionally, the basal occipitotemporal surfaces of 10 separate cerebral hemisphere specimens were examined to define the surface topography of sulci and gyri, with attention to the appearance and anatomical patterns and variations of the collateral sulcus and the surrounding gyri. RESULTS The retrosigmoid approach allowed for clear visualization of the basal occipitotemporal surface. The collateral sulcus was identified and permitted easy endoscopic access to the ventricular atrium. The conical corridor thus obtained provided an average base working area of 3.9 cm2 at an average depth of 4.5 cm. The mean cortical thickness traversed to enter the ventricle was 1.4 cm. The intraventricular anatomy of the ipsilateral ventricle was defined clearly in all 8 exposures in this manner. The anatomy of the basal occipitotemporal surface, observed in a total of 18 hemispheres, showed a consistent pattern, with the collateral sulcus abutted by the parahippocampal gyrus medially, and the fusiform and lingual gyrus laterally. The collateral sulcus was found to be caudally bifurcated in 14 of the 18 specimens. CONCLUSIONS The retrosigmoid supracerebellar transtentorial transcollateral sulcus approach is technically feasible. This approach has the potential advantage of providing a short and direct path to the atrium, hence avoiding violation of deep neurovascular structures and preserving eloquent areas. Although this approach appears unconventional, it may provide a minimally invasive option for the surgical management of selected lesions within the atrium of the lateral ventricle.

2018 ◽  
Vol 1 (4) ◽  
pp. 311-318
Author(s):  
Alejandra Jaume ◽  
Federico Salle ◽  
Pablo Pereda ◽  
Fernando Martínez ◽  
Nicolas Sgarbi ◽  
...  

The study of the mesial aspect has gained importance due to its anatomic complexity and its relationship to the surgical treatment of epilepsy. The aim of this paper is to do an anatomo-radiologic correlation of the morphology and topography of the mesial aspect of the temporal lobe, with its neurosurgical application in the treatment of diseases in the region. Eight (8) adult formalin fixed hemispheres with no pathologic signs were studied. On 4 of them sections within the 3 planes were performed (sagittal, coronal and axial), for radiologic correlation. On the remaining 4, dissection of the mesial region was done, in order to correlate the structures found during surgical approach to the region. Both in the cadaveric hemispheres and in the radiologic images, structures from the mesial region were identified, this included: collateral sulcus, rinal sulcus, parahippocampal gyrus, temporal uncus, hippocampal sulcus, hippocampus with its 3 sectors (head, body and tail), the inferior choroidal point and the collicular point that divides the hippocampus intro 3 sectors (anterior, medium and posterior). With the results obtained, the principal anamoto- radiologic aspects of the approach to the mesial aspect of the temporal lobe were analyzed, comparing them with results of previous reports. The proper knowledge of both morphologic and topographic anatomy of the mesial aspect of the temporal lobe is crucial for both interpreting radiologic studies and a correct surgical approach for surgical treatment of epilepsy.


Author(s):  
Rimsha Umer ◽  
Muhammad Touqeer ◽  
Abdullah Hisam Omar ◽  
Ali Ahmadian ◽  
Soheil Salahshour ◽  
...  

AbstractThe Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is considered among the most frequently used techniques to deal with multi-criteria group decision-making (MCGDM) conflicts. In this article, we have presented an extended TOPSIS technique in the framework of interval type-2 trapezoidal Pythagorean fuzzy numbers (IT2TrPFN). We first projected a novel approach to evaluate the distance between them using ordered weighted averaging operator and $$(\alpha ,\beta )$$ ( α , β ) -cut. Subsequently, we widen the concept of TOPSIS method formed on the distance method with IT2TrPFNs and applied it on MCGDM dilemma by considering the attitudes and perspectives of the decision-makers. Lastly, an application of solar tracking system and numerous contrasts with the other existing techniques are presented to express the practicality and feasibility of our projected approach.


2009 ◽  
Vol 24 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Luís Augusto da Silveira ◽  
Fernando Braga Cassiano Silveira ◽  
Valéria Paula Sassoli Fazan

PURPOSE: Despite the fact that anatomical variations of the celiac trunk are well explored in the literature, information on these vessels diameters is scanty. The aims of the present study were to describe the arterial diameters of the celiac trunk and its main branches, and to investigate if these diameters are altered in those cases presenting anatomical variations of these vessels. METHODS: Twenty-one formalin fixed adult male cadavers were appropriately dissected for the celiac trunk identification and arterial diameter measurements. Arteries measured included the celiac trunk and its main branches (splenic artery, left gastric artery and common hepatic artery), as the proper hepatic artery, right gastric artery, the left and right hepatic arteries and the gastroduodenal artery. RESULTS: From the 21 cadavers, 6 presented anatomical variations of, at least, one of the above mentioned branches. The average arterial diameter comparisons between groups (normal and variable) clearly showed smaller diameters for variable vessels, but with no significant difference. CONCLUSION: Our data indicates the possibility of a diameter reduction of the celiac trunk main branches in the presence of anatomical variations. This should be taken into account on the selection for the liver transplantation donors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cuicui Xu ◽  
Jessica E. Owen ◽  
Thorarinn Gislason ◽  
Bryndis Benediktsdottir ◽  
Stephen R. Robinson

AbstractCorpora amylacea (CoA) are spherical aggregates of glucose polymers and proteins within the periventricular, perivascular and subpial regions of the cerebral cortex and the hippocampal cornu ammonis (CA) subfields. The present study quantified the distribution of CoA in autopsied hippocampi of patients with obstructive sleep apnoea (OSA) using ethanolamine-induced fluorescence. CoA were observed in 29 of 30 patients (96.7%). They were most abundant in periventricular regions (wall of lateral ventricle, alveus, fimbria and CA4), rarely found in the CA3 and CA1, and undetectable in the CA2 or subiculum. A spatiotemporal sequence of CoA deposition was postulated, beginning in the fimbria and progressively spreading around the subpial layer until they extended medially to the wall of the lateral ventricle and laterally to the collateral sulcus. This ranked CoA sequence was positively correlated with CoA packing density (count and area fraction) and negatively correlated with CoA minimum diameters (p < 0.05). Although this sequence was not correlated with age or body mass index (BMI), age was positively correlated with the mean and maximum diameters of CoA. These findings support the view that the spatiotemporal sequence of CoA deposition is independent of age, and that CoA become larger due to the accretion of new material over time.


2017 ◽  
Vol 13 (5) ◽  
pp. 614-621 ◽  
Author(s):  
Blake Harrison Priddy ◽  
Cristian Ferrareze Nunes ◽  
Andre Beer-Furlan ◽  
Ricardo Carrau ◽  
Iacopo Dallan ◽  
...  

Abstract BACKGROUND: In the last decade, endoscopic skull base surgery has significantly developed and generated a plethora of techniques and approaches for access to the cranial ventral floor. However, the exploration for the least-aggressive, maximally efficient approach continues. OBJECTIVE: To describe in detail an anatomical study, along with the technical nuances of a novel endoscopic approach to Meckel's Cave (MC) using a lateral transorbital (LTO) route. METHODS: Eighteen orbits of injected cadaveric specimens were operated on, using an endoscopic LTO approach to MC, middle cranial fossa, and paramedian skull base preserving the orbital rim. Surgical navigation and an after-the-fact infratemporal craniectomy were utilized to identify the limits of the approach. RESULTS: Following a transorbital approach opening a trapezoid window at the superolateral aspect (average 166.7 mm2), a middle fossa “peeling” and full visualization of MC was accomplished with no difficulties in all specimens. The entire approach was performed extradurally without the need to expose the temporal lobe. CONCLUSION: In a cadaveric model, the endoscopic LTO approach affords a direct route to access MC. Its main advantage is that it is minimally disruptive in nature, less brain retraction is required, and it reaches the middle fossa in an anterolateral perspective. It also requires no manipulation of the temporalis muscle, limited cosmetic incision, and rapid recovery. It seems a viable alternative to traditional approaches for lesions lateral to the cranial nerves at the cavernous sinus and MC, that is, schwannomas. Clinical utilization of this approach will challenge its efficacy and identify limitations.


2016 ◽  
Vol 268 ◽  
pp. 163-170 ◽  
Author(s):  
Suzanne M. Peters ◽  
Ilona J. Pinter ◽  
Helen H.J. Pothuizen ◽  
Raymond C. de Heer ◽  
Johanneke E. van der Harst ◽  
...  

2007 ◽  
Vol 106 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Mario Ammirati ◽  
Antonio Bernardo

Object The superior orbital fissure (SOF) is an important landmark in the neurosurgical pterional approach, but the anatomical features of the SOF and the procedures necessary to fully expose it and its contents have not been detailed. Although the pterional approach is commonly used during skull base or vascular surgery by neurosurgeons who may already be familiar with its nuances and anatomical relationships to the SOF, this knowledge may also be useful to the wider neurosurgical community. The authors describe the spatial relationships of the contents of the SOF and suggest a specific sequence of steps for exposing the SOF region in a pterional approach. Methods Using standard microsurgical equipment and instruments, the authors performed 20 pterional approaches in 10 embalmed cadaver heads in which the vascular systems had been injected with colored material. Five sequential steps were delineated for approaching and dissecting the SOF and its contents: 1) drilling the sphenoidal ridge, anterior clinoidal process, and part of the greater and lesser wings of the sphenoid; 2) resecting the dural bridge; 3) detaching the hemispheric dura mater, thereby exposing the anterior portion of the cavernous sinus and the neural component entering the SOF; 4) identifying and dissecting the extraanular structures; and 5) opening the anulus of Zinn and identifying its neural constituents. Conclusions Knowing the 3D relationships of the contents of the SOF encountered in the pterional approach enables safe neurosurgical access to the area. The proposed sequence of steps allows a controlled exposure of the SOF and surrounding areas. Untethering the frontotemporal lobe by transecting the dural bridge connecting the dura to the perior-bita allows good exposure of the basal frontotemporal lobes, both intra- and extradurally, and reduces brain retraction.


2015 ◽  
Vol 86 (11) ◽  
pp. e4.90-e4
Author(s):  
Timothy Shakespeare ◽  
Diego Kaski ◽  
Keir Yong ◽  
Ross Patterson ◽  
Catherine Slattery ◽  
...  

Background and aimsThe clinico-neuroradiological syndrome posterior cortical atrophy (PCA) is the cardinal ‘visual dementia’. We evaluated oculomotor function in patients with PCA.Methods20 PCA patients, 17 typical Alzheimer's disease (tAD) patients and 22 healthy controls completed tests of fixation, saccade and smooth pursuit eye movements using an infrared pupil tracking system.ResultsEye movement abnormalities occur in 80% of PCA patients (compared to 17% tAD, 5% controls). PCA saccades were significantly hypometric, especially for distant targets. PCA patients were slower to reach saccadic targets whose onset overlapped with fixation, consistent with ‘sticky fixation’. Time to reach saccadic targets was also significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, tAD patients showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, whilst PCA patients showed characteristically large saccadic intrusions whose frequency correlated significantly with generalised reductions in cortical thickness. Smooth pursuit was also impaired, with lower gain in both PCA and tAD patient groups compared to controls.ConclusionsEye movement abnormalities are near-ubiquitous in PCA, and may help distinguish PCA from tAD. We suggest the PCA oculomotor profile reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. The results have implications for other patients with dementia-related visual impairment.


2016 ◽  
Vol 46 (10) ◽  
pp. 2083-2096 ◽  
Author(s):  
G. Roberts ◽  
R. Lenroot ◽  
A. Frankland ◽  
P. K. Yeung ◽  
N. Gale ◽  
...  

BackgroundFronto-limbic structural brain abnormalities have been reported in patients with bipolar disorder (BD), but findings in individuals at increased genetic risk of developing BD have been inconsistent. We conducted a study in adolescents and young adults (12–30 years) comparing measures of fronto-limbic cortical and subcortical brain structure between individuals at increased familial risk of BD (at risk; AR), subjects with BD and controls (CON). We separately examined cortical volume, thickness and surface area as these have distinct neurodevelopmental origins and thus may reflect differential effects of genetic risk.MethodWe compared fronto-limbic measures of grey and white matter volume, cortical thickness and surface area in 72 unaffected-risk individuals with at least one first-degree relative with bipolar disorder (AR), 38 BD subjects and 72 participants with no family history of mental illness (CON).ResultsThe AR group had significantly reduced cortical thickness in the left pars orbitalis of the inferior frontal gyrus (IFG) compared with the CON group, and significantly increased left parahippocampal gyral volume compared with those with BD.ConclusionsThe finding of reduced cortical thickness of the left pars orbitalis in AR subjects is consistent with other evidence supporting the IFG as a key region associated with genetic liability for BD. The greater volume of the left parahippocampal gyrus in those at high risk is in line with some prior reports of regional increases in grey matter volume in at-risk subjects. Assessing multiple complementary morphometric measures may assist in the better understanding of abnormal developmental processes in BD.


2021 ◽  
Vol 11 (12) ◽  
pp. 1619
Author(s):  
Shinya Watanuki

Brand equity is an important intangible for enterprises. As one advantage, products with brand equity can increase revenue, compared with those without such equity. However, unlike tangibles, it is difficult for enterprises to manage brand equity because it exists within consumers’ minds. Although, over the past two decades, numerous consumer neuroscience studies have revealed the brain regions related to brand equity, the identification of unique brain regions related to such equity is still controversial. Therefore, this study identifies the unique brain regions related to brand equity and assesses the mental processes derived from these regions. For this purpose, three analysis methods (i.e., the quantitative meta-analysis, chi-square tests, and machine learning) were conducted. The data were collected in accordance with the general procedures of a qualitative meta-analysis. In total, 65 studies (1412 foci) investigating branded objects with brand equity and unbranded objects without brand equity were examined, whereas the neural systems involved for these two brain regions were contrasted. According to the results, the parahippocampal gyrus and the lingual gyrus were unique brand equity-related brain regions, whereas automatic mental processes based on emotional associative memories derived from these regions were characteristic mental processes that discriminate branded from unbranded objects.


Sign in / Sign up

Export Citation Format

Share Document