scholarly journals Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping

2003 ◽  
Vol 15 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Hagen Schiffbauer ◽  
Mitchel S. Berger ◽  
Paul Ferrari ◽  
Dirk Freudenstein ◽  
Howard A. Rowley ◽  
...  

Object The aim of this study was to compare quantitatively the methods of preoperative magnetic source (MS) imaging and intraoperative electrophysiological cortical mapping (ECM) in the localization of sensorimotor cortex in patients with intraaxial brain tumors. Methods Preoperative magnetoencephalography (MEG) was performed while patients received painless tactile somatosensory stimulation of the lip, hand, and foot. The early somatosensory evoked field was modeled using a single equivalent current dipole approach to estimate the spatial source of the response. Three-dimensional magnetic resonance image volume data sets with fiducials were coregistered with the MEG recordings to form the MS image. These individualized functional brain maps were integrated into a neuronavigation system. Intraoperative mapping of somatosensory and/or motor cortex was performed and sites were compared. In two subgroups of patients we compared intraoperative somatosensory and motor stimulation sites with MS imaging–based somatosensory localizations. Mediolateral projection of the MS imaging source localizations to the cortical surface reduced systematic intermodality discrepancies. The distance between two corresponding points determined using MS imaging and ECM was 12.5 ± 1.3 mm for somatosensory–somatosensory and 19 ± 1.3 mm for somatosensory–motor comparisons. The observed 6.5 mm increase in site separation was systematically demonstrated in the anteroposterior direction, as expected from actual anatomy. In fact, intraoperative sites at which stimulation evoked the same patient response exhibited a spatial variation of 10.7 ± 0.7 mm. Conclusions Preoperative MS imaging and intraoperative ECM show a favorable degree of quantitative correlation. Thus, MS imaging can be considered a valuable and accurate planning adjunct in the treatment of patients with intraaxial brain tumors.

2002 ◽  
Vol 97 (6) ◽  
pp. 1333-1342 ◽  
Author(s):  
Hagen Schiffbauer ◽  
Mitchel S. Berger ◽  
Paul Ferrari ◽  
Dirk Freudenstein ◽  
Howard A. Rowley ◽  
...  

Object. The aim of this study was to compare quantitatively the methods of preoperative magnetic source (MS) imaging and intraoperative electrophysiological cortical mapping (ECM) in the localization of sensorimotor cortex in patients with intraaxial brain tumors. Methods. Preoperative magnetoencephalography (MEG) was performed while patients received painless tactile somatosensory stimulation of the lip, hand, and foot. The early somatosensory evoked field was modeled using a single equivalent current dipole approach to estimate the spatial source of the response. Three-dimensional magnetic resonance image volume data sets with fiducials were coregistered with the MEG recordings to form the MS image. These individualized functional brain maps were integrated into a neuronavigation system. Intraoperative mapping of somatosensory and/or motor cortex was performed and sites were compared. In two subgroups of patients we compared intraoperative somatosensory and motor stimulation sites with MS imaging—based somatosensory localizations. Mediolateral projection of the MS imaging source localizations to the cortical surface reduced systematic intermodality discrepancies. The distance between two corresponding points determined using MS imaging and ECM was 12.5 ± 1.3 mm for somatosensory—somatosensory and 19 ± 1.3 mm for somatosensory—motor comparisons. The observed 6.5 mm increase in site separation was systematically demonstrated in the anteroposterior direction, as expected from actual anatomy. In fact, intraoperative sites at which stimulation evoked the same patient response exhibited a spatial variation of 10.7 ± 0.7 mm. Conclusions. Preoperative MS imaging and intraoperative ECM show a favorable degree of quantitative correlation. Thus, MS imaging can be considered a valuable and accurate planning adjunct in the treatment of patients with intraaxial brain tumors.


Neurosurgery ◽  
2001 ◽  
Vol 49 (6) ◽  
pp. 1313-1321 ◽  
Author(s):  
Hagen Schiffbauer ◽  
Paul Ferrari ◽  
Howard A. Rowley ◽  
Mitchel S. Berger ◽  
Timothy P.L. Roberts

ABSTRACT OBJECTIVE To determine whether low-grade gliomas contain functional cortical activity more often than high-grade gliomas within radiologically defined abnormal tissue. METHODS Patients with intra-axial cerebral lesions located in the vicinity of eloquent brain cortex preoperatively underwent magnetic source imaging. A dual 37-channel biomagnetometer was used to perform the imaging. Evoked magnetic fields were analyzed using the single-equivalent dipole representation to ascertain the neuronal source. Stimuli included painless tactile somatosensory stimulation of fingers, toes, and lips and auditory presentation of pure sinusoidal tones. RESULTS A retrospective analysis of 106 nonconsecutively treated patients, who had undergone preoperative magnetic source imaging between February 1996 and December 1999, revealed that 24.5% of the patients had been at risk for neurological deficits, because functionally active tissue was located within or at the border of the tumor. Functional activity was found within the radiologically defined lesion in 18% of Grade 2 tumors, in 17% of Grade 3 tumors, and in 8% of Grade 4 tumors. CONCLUSION The results confirm that, regardless of tumor grade, intra-axial brain tumors may involve or directly border on functional cortex. The degree of involvement of functionally viable cortex appeared greater for low-grade tumors than for high-grade lesions. On the other hand, high-grade lesions were more likely to be associated with functional cortex at their margins or within peritumoral edema. To safely maximize tumor resection, preoperative functional imaging and intraoperative electrophysiological mapping of the cerebral cortex and the white matter tracts are deemed necessary.


2009 ◽  
Vol 111 (6) ◽  
pp. 1248-1256 ◽  
Author(s):  
Edward F. Chang ◽  
Srikantan S. Nagarajan ◽  
Mary Mantle ◽  
Nicholas M. Barbaro ◽  
Heidi E. Kirsch

Object Routine scalp electroencephalography (EEG) cannot always distinguish whether generalized epileptiform discharges are the result of primary bilateral synchrony or secondary bilateral synchrony (SBS) from a focal origin; this is an important distinction because the latter may be amenable to resection. Whole-head magnetoencephalography (MEG) has superior spatial resolution compared with traditional EEG, and can potentially elucidate seizure foci in challenging epilepsy cases in which patients are undergoing evaluation for surgery. Methods Sixteen patients with medically intractable epilepsy in whom SBS was suspected were referred for magnetic source (MS) imaging. All patients had bilateral, synchronous, widespread, and most often generalized spike-wave discharges on scalp EEG studies, plus some other clinical (for example, seizure semiology) or MR imaging feature (for example, focal lesion) suggesting focal onset and hence possible surgical candidacy. The MS imaging modality is the combination of whole-head MEG and parametric reconstruction of corresponding electrical brain sources. An MEG and simultaneous EEG studies were recorded with a 275-channel whole-head system. Single-equivalent current dipoles were estimated from the MEG data, and dipole locations and orientations were superimposed on patients' MR images. Results The MS imaging studies revealed focal dipole clusters in 12 (75%) of the 16 patients, of which a single dipole cluster was identified in 7 patients (44%). Patient age, seizure type, duration of disease, video-EEG telemetry, and MR imaging results were analyzed to determine factors predictive of having clusters revealed on MS imaging. Of these factors, only focal MR imaging anatomical abnormalities were associated with dipole clusters (chi-square test, p = 0.03). Selective resections (including the dipole cluster) in 7 (87%) of 8 patients resulted in seizure-free or rare seizure outcomes (Engel Classes I and II). Conclusions Magnetic source imaging may provide noninvasive anatomical and neurophysiological confirmation of localization in patients in whom there is a suspicion of SBS (based on clinical or MR imaging data), especially in those with an anatomical lesion. Identification of a focal seizure origin has significant implications for both resective and nonresective treatment of intractable epilepsy.


2000 ◽  
Vol 92 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Cary D. Alberstone ◽  
Stephen L. Skirboll ◽  
Edward C. Benzel ◽  
John A. Sanders ◽  
Blaine L. Hart ◽  
...  

Object. The availability of large-array biomagnetometers has led to advances in magnetoencephalography that permit scientists and clinicians to map selected brain functions onto magnetic resonance images. This merging of technologies is termed magnetic source (MS) imaging. The present study was undertaken to assess the role of MS imaging for the guidance of presurgical planning and intraoperative neurosurgical technique used in patients with intracranial mass lesions.Methods. Twenty-six patients with intracranial mass lesions underwent a medical evaluation consisting of MS imaging, a clinical history, a neurological examination, and assessment with the Karnofsky Performance Scale. Magnetic source imaging was used to locate the somatosensory cortex in 25 patients, the visual cortex in six, and the auditory cortex in four. The distance between the lesion and the functional cortex was determined for each patient.Twenty-one patients underwent a neurosurgical procedure. As a surgical adjunct, a frameless stereotactic navigational system was used in 17 cases and a standard stereotactic apparatus in four cases. Because of the results of their MS imaging examination, two patients were not offered surgery, four underwent a stereotactic biopsy procedure, 10 were treated with a subtotal surgical resection, and seven were treated with complete surgical resection. One patient deteriorated before a procedure could be scheduled and, therefore, was not offered surgery, and two patients were offered surgery but declined. Three patients experienced surgery-related complications.Conclusions. Magnetic source imaging is an important noninvasive neurodiagnostic tool that provides critical information regarding the spatial relationship of a brain lesion to functional cortex. By providing this information, MS imaging facilitates a minimum-risk management strategy and helps guide operative neurosurgical technique in patients with intracranial mass lesions.


2009 ◽  
Vol 120 (4) ◽  
pp. e135
Author(s):  
M. González-Hidalgo ◽  
C.J. Saldaña Galan ◽  
F. Maeztu ◽  
C. Amo ◽  
A. Fernández ◽  
...  

2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 136-140 ◽  
Author(s):  
Joseph R. Smith ◽  
Don W. King ◽  
Yong D. Park ◽  
Mark R. Lee ◽  
Gregory P. Lee ◽  
...  

Object. The purpose of this study was to determine if magnetic source (MS) imaging could provide useful information in the planning and performance of gamma knife radiosurgery (GKS) for epilepsy. Methods. Magnetic source imaging of interictal epileptiform dipoles was studied in 53 epilepsy surgery candidates. All patients underwent volumetric magnetic resonance (MR) imaging. Subsequently, magnetoencephalography (MEG) was performed using single or dual 37—channel units. The MR images and MEG recordings were then coregistered to produce the MS imaging data. Magnetic source imaging epileptiform data were reviewed in a blinded fashion and spatial distributions were classified as focal, regional, multiple, scattered, or none. Postresection operative photographs were compared with MS image results to determine whether extensive or partial/no resection of the MS image focus had been accomplished. Magnetoencephalography dipoles were identified in 47 patients (89%), in 46 of whom the lesions were resected. This included 20 (80%) of 25 anterior temporal lobe (ATL) cases, and 26 (93%) of 28 extratemporal lobe (ETL) cases. Of the six patients who underwent extensive ATL resections, three (50%) were seizure free. Of 14 patients who underwent partial/no resection of the ATL, seven (50%) were seizure free. There was no clear relation between MS image spatial distribution and surgery-related outcome. Of the seven ATL cases with hippocampal atrophy, five patients (71%) were seizure free. Of 12 ETL cases (three lesional), 10 patients (83%) were seizure free. Of 14 patients who underwent partial/no ETL resections (three lesional), two (14%) were seizure free. Of five nonlesional ETL cases with focal MS image dipoles, four patients (80%) were seizure free. Of five nonlesional ETL cases with regional dipoles, three patients (60%) were seizure free. Of eight ETL cases with multiple MS image dipoles, two patients (25%) were seizure free. Spatial agreement of MS imaging and electrographic data had no apparent effect on outcome of either ATL or ETL cases. Conclusions. Nonlesional ETL cases with focal (and in some cases multiple or regional) epileptiform MS image dipole distributions benefit significantly from inclusion of the MS image epileptiform focus in the resections. Nonlesional ETL cases suitable for GKS may similarly benefit from including the MS image focus in the irradiated area.


Author(s):  
K. Ebmeier ◽  
N. Haberland ◽  
J. Steenbeck ◽  
A. Hochstetter ◽  
R. Kalff

1999 ◽  
Vol 91 (5) ◽  
pp. 787-796 ◽  
Author(s):  
Panagiotis G. Simos ◽  
Andrew C. Papanicolaou ◽  
Joshua I. Breier ◽  
James W. Wheless ◽  
Jules E. C. Constantinou ◽  
...  

Object. In this paper the authors demonstrate the concordance between magnetic source (MS) imaging and direct cortical stimulation for mapping receptive language cortex.Methods. In 13 consecutive surgical patients, cortex specialized for receptive language functions was identified noninvasively by obtaining activation maps aided by MS imaging in the context of visual and auditory word-recognition tasks. Surgery was then performed for treatment of medically intractable seizure disorder (eight patients), and for resection of tumor (four), or angioma (one). Mapping of language areas with cortical stimulation was performed intraoperatively in 10 patients and extraoperatively in three. Cortical stimulation mapping verified the accuracy of the MS imaging—based localization in all cases.Conclusions. Information provided by MS imaging can be especially helpful in cases of atypical language representation, including bihemispheric representation, and location of language in areas other than those expected within the dominant hemisphere, such as the anterior portion of the superior temporal gyrus, the posteroinferior portion of the middle temporal gyrus, the basal temporal cortex, and the lateral temporooccipital cortex.


2002 ◽  
Vol 97 (4) ◽  
pp. 865-873 ◽  
Author(s):  
Adam N. Mamelak ◽  
Nancy Lopez ◽  
Massoud Akhtari ◽  
W. William Sutherling

Object. Magnetoencephalography (MEG) and magnetic source (MS) imaging are techniques that have been increasingly used for preoperative localization of epileptic foci and areas of eloquent cortex. The use of MEG examinations must be carefully balanced against the high cost and technological investments required to perform these studies, particularly when less expensive alternative localization methods are available. To help elucidate the value of MEG, the authors have critically reviewed their experience with whole-head MEG in the case management of patients undergoing epilepsy surgery. Methods. The authors identified 23 patients with suspected focal epilepsy who underwent whole-head MEG and MS imaging at Huntington Memorial Hospital and, subsequently, underwent invasive intracranial electrode monitoring and electrocorticography (ECoG) to localize the zone of seizure origin for surgical resection. The results of the MS imaging were retrospectively stratified into three groups by the number of interictal spikes recorded during a 4-hour recording session: Class I (no spikes), Class II (≤ five spikes), and Class III (≥ six spikes). Class III was further subdivided according to the clustering density of the interictal spikes: Class IIIA represents a mean distance between interictal spikes of 4 mm or greater (that is, diffusely clustered) and Class IIIB represents a mean distance between interictal spikes of less than 4 mm (that is, densely clustered). The authors analyzed these groups to determine to what extent the results of MS imaging correlated with the ECoG-determined zone of seizure origin. In addition, they assessed whether the MS imaging study provided critical localization data and correlated with surgical outcome following resection. A statistical analysis of these correlations was also performed. Of the 40 patients studied, 23 underwent invasive monitoring, including 13 with neocortical epilepsy, four with mesial temporal lobe epilepsy, and six with suspected neocortical epilepsy that could not be clearly localized by ECoG. Depth electrodes were used in nine cases, subdural grids in nine cases, depth electrodes followed by subdural grids and strips in four cases, and intraoperative ECoG in one case. Electrocorticography was able to localize the zone of seizure origin in 16 (70%) of 23 cases. In 11 (69%) of the 16 cases in which ECoG was able to localize the zone of seizure origin, the interictal spikes on the MS images were classified as Class IIIB (densely clustered) and regionally correlated to the MS imaging—determined localization in all cases (that is, the same lobe). In contrast, no Class IIIB cases were identified when ECoG was unable to localize the zone of seizure origin. This difference showed a trend toward, but did not achieve, statistical significance (p < 0.23), presumably because of the relatively small number of cases available for analysis. In three cases (all Class IIIB), MS imaging was used to guide invasive electrodes to locations that otherwise would not have been targeted and provided unique localization data, not evident from other imaging modalities, that strongly influenced the surgical management of the patient. The classification of findings on MS images into subgroups and subsequent statistical analysis generated a model that predicted that Class IIIB MS imaging data are likely to provide reliable information to guide surgical placement of electrodes, but all other data groups do not provide localization information that is reliable enough to guide surgical decision making. Conclusions. Magnetic source imaging can provide unique localization information that is not available when other noninvasive methods are used. Magnetic source imaging appears most useful for cases of neocortical epilepsy. In particular, when an MS imaging study revealed six or more interictal spikes that were densely clustered in a single anatomical location, the MS image was highly correlated with the zone of seizure origin identified by ECoG. In these cases the MS imaging data may be useful to guide placement of intracranial electrodes.


2007 ◽  
Vol 107 (3) ◽  
pp. 488-494 ◽  
Author(s):  
Jeffrey I. Berman ◽  
Mitchel S. Berger ◽  
Sungwon Chung ◽  
Srikantan S. Nagarajan ◽  
Roland G. Henry

Object Resecting brain tumors involves the risk of damaging the descending motor pathway. Diffusion tensor (DT)–imaged fiber tracking is a noninvasive magnetic resonance (MR) technique that can delineate the subcortical course of the motor pathway. The goal of this study was to use intraoperative subcortical stimulation mapping of the motor tract and magnetic source imaging to validate the utility of DT-imaged fiber tracking as a tool for presurgical planning. Methods Diffusion tensor-imaged fiber tracks of the motor tract were generated preoperatively in nine patients with gliomas. A mask of the resultant fiber tracks was overlaid on high-resolution T1- and T2-weighted anatomical MR images and used for stereotactic surgical navigation. Magnetic source imaging was performed in seven of the patients to identify functional somatosensory cortices. During resection, subcortical stimulation mapping of the motor pathway was performed within the white matter using a bipolar electrode. Results A total of 16 subcortical motor stimulations were stereotactically identified in nine patients. The mean distance between the stimulation sites and the DT-imaged fiber tracks was 8.7 ±3.1 mm (±standard deviation). The measured distance between subcortical stimulation sites and DT-imaged fiber tracks combines tracking technique errors and all errors encountered with stereotactic navigation. Conclusions Fiber tracks delineated using DT imaging can be used to identify the motor tract in deep white matter and define a safety margin around the tract.


Sign in / Sign up

Export Citation Format

Share Document