Barbiturate protection against hypoxic neuronal damage in vitro

1986 ◽  
Vol 65 (2) ◽  
pp. 230-232 ◽  
Author(s):  
Peter G. Aitken ◽  
Steven J. Schiff

✓ Hippocampal tissue slices in vitro were exposed to periods of hypoxia of different durations. Addition of pentobarbital to the perfusion medium significantly increased the duration of hypoxia that was survived by CA1 pyramidal cells.

2005 ◽  
Vol 102 (6) ◽  
pp. 1101-1107 ◽  
Author(s):  
Hartmut Vatter ◽  
Michael Zimmermann ◽  
Veronika Tesanovic ◽  
Andreas Raabe ◽  
Lothar Schilling ◽  
...  

Object. The central role of endothelin (ET)—1 in the development of cerebral vasospasm after subarachnoid hemorrhage is indicated by the successful treatment of this vasospasm in several animal models by using selective ETA receptor antagonists. Clazosentan is a selective ETA receptor antagonist that provides for the first time clinical proof that ET-1 is involved in the pathogenesis of cerebral vasospasm. The aim of the present investigation was, therefore, to define the pharmacological properties of clazosentan that affect ETA receptor—mediated contraction in the cerebrovasculature. Methods. Isometric force measurements were performed in rat basilar artery (BA) ring segments with (E+) and without (E−) endothelial function. Concentration effect curves (CECs) were constructed by cumulative application of ET-1 or big ET-1 in the absence or presence of clazosentan (10−9, 10−8, and 10−7 M). The inhibitory potency of clazosentan was determined by the value of the affinity constant (pA2). The CECs for contraction induced by ET-1 and big ET-1 were shifted to the right in the presence of clazosentan in a parallel dose-dependent manner, which indicates competitive antagonism. The pA2 values for ET-1 were 7.8 (E+) and 8.6 (E−) and the corresponding values for big ET-1 were 8.6 (E+) and 8.3 (E−). Conclusions. The present data characterize clazosentan as a potent competitive antagonist of ETA receptor—mediated constriction of the cerebrovasculature by ET-1 and its precursor big ET-1. These functional data may also be used to define an in vitro profile of an ET receptor antagonist with a high probability of clinical efficacy.


1994 ◽  
Vol 80 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Yasuhiro Matsuda ◽  
Keiichi Kawamoto ◽  
Katsuzo Kiya ◽  
Kaoru Kurisu ◽  
Kazuhiko Sugiyama ◽  
...  

✓ The presence of the progesterone receptor (PR) in meningioma tissue has been confirmed by previous investigations. Studies have shown that the antiprogesterone drug, mifepristone, is a potent agent that inhibits the growth of cultured meningioma cells and reduces the size of meningiomas in experimental animal models and humans. However, these studies have not fully examined the relationship between the antitumor effects of an antiprogesterone agent and the expression of the PR. The present study examined the antitumor effects of mifepristone and a new potent antiprogesterone agent, onapristone; a correlation between the antitumor effects of these antiprogesterones and the presence of PR's in meningiomas in vitro and in vivo was also investigated. Meningioma tissue surgically removed from 13 patients was used in this study. In the in vitro arm of the study, mifepristone and onapristone exhibited cytostatic and cytocidal effects against cultured meningioma cells, regardless of the presence or absence of PR's; however, three PR-negative meningiomas showed no response to any dose of mifepristone and/or onapristone. In the in vivo arm, meningioma cells, embedded in a collagen gel, were implanted into the renal capsules of nude mice. Antiprogesterone treatment resulted in a marked reduction of the tumor volume regardless of the presence or absence of PR's. No histological changes in the meningioma cells suggestive of necrosis or apoptosis were detected in any of the mice treated with antiprogesterones. These findings suggest that mifepristone and onapristone have an antitumor effect against meningioma cells via the PR's and/or another receptor, such as the glucocorticoid receptor.


1995 ◽  
Vol 82 (6) ◽  
pp. 1053-1058 ◽  
Author(s):  
Paul A. Grabb ◽  
Mark R. Gilbert

✓ The authors investigated the effects of glioma cells and pharmacological agents on the permeability of an in vitro blood-brain barrier (BBB) to determine the following: 1) whether malignant glia increase endothelial cell permeability; 2) how glucocorticoids affect endothelial cell permeability in the presence and absence of malignant glia; and 3) whether inhibiting phospholipase A2, the enzyme that releases arachidonic acid from membrane phospholipids, would reduce any malignant glioma—induced increase in endothelial cell permeability. Primary cultures of rat brain capillary endothelium were grown on porous membranes; below the membrane, C6, 9L rat glioma, T98G human glioblastoma, or no cells (control) were cocultured. Dexamethasone (0.1 µM), bromophenacyl bromide (1.0 µM), a phospholipase A2 inhibitor, or nothing was added to culture media 72 hours prior to assaying the rat brain capillary endothelium permeability. Permeability was measured as the flux of radiolabeled sucrose across the rat brain capillary endothelium monolayer and then calculated as an effective permeability coefficient (Pe). When neither dexamethasone nor bromophenacyl bromide was present, C6 cells reduced the Pe significantly (p < 0.05), whereas 9L and T98G cells increased Pe significantly (p < 0.05) relative to rat brain capillary endothelium only (control). Dexamethasone reduced Pe significantly for all cell preparations (p < 0.05). The 9L and T98G cell preparations coincubated with dexamethasone had the lowest Pe of all cell preparations. The Pe was not affected in any cell preparation by coincubation with bromophenacyl bromide (p > 0.45). These in vitro BBB experiments showed that: 1) malignant glia, such as 9L and T98G cells, increase Pe whereas C6 cells probably provide an astrocytic influence by reducing Pe; 2) dexamethasone provided significant BBB “tightening” effects both in the presence and absence of glioma cells; 3) the in vivo BBB is actively made more permeable by malignant glia and not simply because of a lack of astrocytic induction; 4) tumor or endothelial phospholipase A2 activity is probably not responsible for glioma-induced increased in BBB permeability; and 5) this model is useful for testing potential agents for BBB protection and for studying the pathophysiology of tumor-induced BBB disruption.


1988 ◽  
Vol 8 (4) ◽  
pp. 568-574 ◽  
Author(s):  
Hiroshi Onodera ◽  
Kyuya Kogure

Opioid ([3H]naloxone) and spirodecanone ([3H]spiperone) binding sites in the hippocampus were visualized in the Mongolian gerbil and in the rat using in vitro autoradiography. In the hippocampus, marked differences were noted in the stratum (sr.) pyramidale of the CA1 subfield where opioid and spirodecanone (assayed in the presence of mianserin and sulpiride) binding activities were very low in gerbils, but high in rats. Gerbils exhibited a high concentration of [3H]naloxone binding sites in the sr. pyramidale of the CA3 subfield, as observed in the rat. In addition, the gerbil has a very high opioid receptor density in the hilar region and in the sr. moleculare of the dentate gyrus. The cellular localization of opioid and spirodecanone receptor sites was studied in the rat hippocampus using selective neuronal damage to CA1 and CA3 neurons by means of ischemia and kainic acid treatment, respectively. The results suggest that the gerbil differs from the rat with respect to the characteristic pyramidal cells (spirodecanone binding site) and interneurons (opioid receptor) in the CA1 subfield of the hippocampus. Distinct localization of opioid and spirodecanone receptors in the gerbil provides a good model with which to investigate the electrophysiological and biochemical roles of opioid peptides and butyrophenone spirodecanone drugs.


1991 ◽  
Vol 75 (5) ◽  
pp. 766-773 ◽  
Author(s):  
Keith B. Quattrocchi ◽  
Edmund H. Frank ◽  
Claramae H. Miller ◽  
Asim Amin ◽  
Bernardo W. Issel ◽  
...  

✓ Infection is a major complication of severe head injury, occurring in 50% to 75% of patients who survive to hospitalization. Previous investigations of immune activity following head injury have demonstrated suppression of helper T-cell activation. In this study, the in vitro production of interferon-gamma (INF-γ), interleukin-1 (IL-1), and interleukin-2 (IL-2) was determined in 25 head-injured patients following incubation of peripheral blood lymphocytes (PBL's) with the lymphocyte mitogen phytohemagglutinin (PHA). In order to elucidate the functional status of cellular cytotoxicity, lymphokine-activated killer (LAK) cell cytotoxicity assays were performed both prior to and following incubation of PBL's with IL-2 in five patients with severe head injury. The production of INF-γ and IL-2 by PHA-stimulated PBL's was maximally depressed within 24 hours of injury (p < 0.001 for INF-γ, p = 0.035 for IL-2) and partially normalized within 21 days of injury. There was no change in the production of IL-1. When comparing the in vitro LAK cell cytotoxicity of PBL's from head-injured patients and normal subjects, there was a significant depression in LAK cell cytotoxicity both prior to (p = 0.010) and following (p < 0.001) incubation of PBL's with IL-2. The results of this study indicate that IL-2 and INF-γ production, normally required for inducing cell-mediated immunity, is suppressed following severe head injury. The failure of IL-2 to enhance LAK cell cytotoxicity suggests that factors other than decreased IL-2 production, such as inhibitory soluble mediators or suppressor lymphocytes, may be responsible for the reduction in cellular immune activity following severe head injury. These findings may have significant implications in designing clinical studies aimed at reducing the incidence of infection following severe head injury.


2005 ◽  
Vol 102 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Todd M. Savarese ◽  
Taichang Jang ◽  
Hoi Pang Low ◽  
Rebecca Salmonsen ◽  
N. Scott Litofsky ◽  
...  

Object. Brain tumors, including gliomas, develop several months after rats are exposed in utero to N-ethyl-N-nitrosourea (ENU). Although pathological changes cannot be detected until these animals are several weeks old, the process that eventually leads to glioma formation must begin soon after exposure given the rapid clearance of the carcinogen and the observation that transformation of brain cells isolated soon after exposure occasionally occurs. This model can therefore potentially provide useful insights about the early events that precede overt glioma formation. The authors hypothesized that future glioma cells arise from stem/progenitor cells residing in or near the subventricular zone (SVZ) of the brain. Methods. Cells obtained from the SVZ or corpus striatum in ENU-exposed and control rats were cultured in an epidermal growth factor (EGF)-containing, chemically defined medium. Usually, rat SVZ cells cultured in this manner (neurospheres) are nestin-positive, undifferentiated, and EGF-dependent and undergo cell senescence. Consistent with these prior observations, control SVZ cells undergo senescence by the 12th to 15th doubling (20 of 20 cultures). In contrast, three of 15 cultures of cells derived from the SVZs of individual ENU-treated rats continue to proliferate for more than 60 cell passages. Each of these nestin-expressing immortalized cell lines harbored a common homozygous deletion spanning the INK4a/ARF locus and was unable to differentiate into neural lineages after exposure to specific in vitro stimuli. Nevertheless, unlike the rat C6 glioma cell line, these immortalized cell lines demonstrate EGF dependence and low clonogenicity in soft agar and did not form tumors after intracranial transplantation. Conclusions. Data in this study indicated that immortalized cells may represent glioma precursors that reside in the area of the SVZ after ENU exposure that may serve as a reservoir for further genetic and epigenetic hits that could eventually result in a full glioma phenotype.


1977 ◽  
Vol 47 (6) ◽  
pp. 864-870 ◽  
Author(s):  
Gajanan V. Sherbet ◽  
M. S. Lakshmi ◽  
Salim K. Haddad

✓ Dexamethasone (104M) was shown to inhibit the growth of human gliomas in culture. This was indicated by the inhibition of incorporation of radioactively labeled thymidine into the deoxyribonucleic acid (DNA) of the cells, and by the increase in the generation time of cells exposed to the drug in vitro. On the other hand, tumors obtained from patients who had received dexamethasone before craniotomy grew considerably faster in vitro than tumors from patients who had not been given the drug before operation.


1990 ◽  
Vol 73 (2) ◽  
pp. 223-233 ◽  
Author(s):  
Kai U. Frerichs ◽  
Perttu J. Lindsberg ◽  
John M. Hallenbeck ◽  
Giora Z. Feuerstein

✓ The effects of a platelet-activating factor (PAF) antagonist on brain edema, cortical microcirculation, blood-brain barrier (BBB) disruption, and neuronal death following focal brain injury are reported. A neodymium:yttrium-aluminum-garnet (Nd:YAG) laser was used to induce highly reproducible focal cortical lesions in anesthetized rats. Secondary brain damage in this model was characterized by progressive cortical hypoperfusion, edema, and BBB disruption in the vicinity of the hemispheroid lesion occurring acutely after injury. The histopathological evolution was followed for up to 4 days. Neuronal damage in the cortex and the hippocampus (CA-1) was assessed quantitatively, revealing secondary and progressive loss of neuronal tissue within the first 24 hours following injury. Pretreatment with the PAF antagonist BN 50739 ameliorated the severe hypoperfusion in 12 rats (increasing local cerebral blood flow from a mean ± standard error of the mean of 40.5% ± 8.3% to 80.2% ± 7.8%, p < 0.01) and reduced edema by 70% in 10 rats (p < 0.05) acutely after injury. The PAF antagonist also reduced the progression of neuronal damage in the cortex and the CA-1 hippocampal neurons (decrease of neuronal death from 88.0% ± 3.9% to 49.8% ± 4.2% at 24 hours in the cortex and from 40.2 ± 5.0% to 13.2% ± 2.1% in the hippocampus in 30 rats; p < 0.05). This study provides evidence to support progressive brain damage following focal brain injury, associated with secondary loss of neuronal cells. In this latter process, PAF antagonists may provide significant therapeutic protection in arresting secondary brain damage following cerebral ischemia and neurological trauma.


1999 ◽  
Vol 90 (6) ◽  
pp. 1115-1124 ◽  
Author(s):  
Linda M. Liau ◽  
Keith L. Black ◽  
Robert M. Prins ◽  
Steven N. Sykes ◽  
Pier-Luigi DiPatre ◽  
...  

Object. An approach toward the treatment of intracranial gliomas was developed in a rat experimental model. The authors investigated the ability of “professional” antigen-presenting cells (dendritic cells) to enhance host antitumor immune responses when injected as a vaccine into tumor-bearing animals.Methods. Dendritic cells, the most potent antigen-presenting cells in the body, were isolated from rat bone marrow precursors stimulated in vitro with granulocyte—macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Cultured cell populations were confirmed to be functional antigen-presenting cells on the basis of expressed major histocompatibility molecules, as analyzed by fluorescence-activated cell sorter cytofluorography. These dendritic cells were then pulsed (cocultured) ex vivo with acid-eluted tumor antigens from 9L glioma cells. Thirty-eight adult female Fischer 344 rats harboring 7-day-old intracranial 9L tumors were treated with three weekly subcutaneous injections of either control media (10 animals), unpulsed dendritic cells (six animals), dendritic cells pulsed with peptides extracted from normal rat astrocytes (10 animals), or 9L tumor antigen—pulsed dendritic cells (12 animals). The animals were followed for survival. At necropsy, the rat brains were removed and examined histologically, and spleens were harvested for cell-mediated cytotoxicity assays.The results indicate that tumor peptide-pulsed dendritic cell therapy led to prolonged survival in rats with established intracranial 9L tumors implanted 7 days prior to the initiation of vaccine therapy in vivo. Immunohistochemical analyses were used to document a significantly increased perilesional and intratumoral infiltration of CD8+ and CD4+ T cells in the groups treated with tumor antigen—pulsed dendritic cells compared with the control groups. In addition, the results of in vitro cytotoxicity assays suggest that vaccination with these peptide-pulsed dendritic cells can induce specific cytotoxic T lymphocytes against 9L tumor cells.Conclusions. Based on these results, dendritic antigen-presenting cells pulsed with acid-eluted peptides derived from autologous tumors represent a promising approach to the immunotherapy of established intracranial gliomas, which may serve as a basis for designing clinical trials in patients with brain tumors.


Sign in / Sign up

Export Citation Format

Share Document