Unilateral deep brain stimulation of the subthalamic nucleus for Parkinson disease

2007 ◽  
Vol 106 (4) ◽  
pp. 626-632 ◽  
Author(s):  
Jerzy L. Slowinski ◽  
John D. Putzke ◽  
Ryan J. Uitti ◽  
John A. Lucas ◽  
Margaret F. Turk ◽  
...  

Object The object of this study was to assess the results of unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) for management of advanced Parkinson disease (PD). Methods A clinical series of 24 patients (mean age 71 years, range 56–80 years) with medically intractable PD, who were undergoing unilateral magnetic resonance imaging–targeted, electrophysiologically guided STN DBS, completed a battery of qualitative and quantitative outcome measures preoperatively (baseline) and postoperatively, using a modified Core Assessment Program for Intracerebral Transplantations protocol. The mean follow-up period was 9 months. Statistically significant improvement was observed in the Unified Parkinson's Disease Rating Scale (UPDRS) Part II score (18%), the total UPDRS PART III score (31%), the contralateral UPDRS Part III score (63%), and scores for axial motor features (19%), contralateral tremor (88%), rigidity (60%), bradykinesia (54%), and dyskinesia (69%), as well as the Parkinson's Disease Quality of Life questionnaire score (15%) in the on-stimulation state compared with baseline. Ipsilateral symptoms improved by approximately 15% or less. Performance on the Purdue pegboard test improved in the contralateral hand in the on-stimulation state compared with the off-stimulation state (38%, p < 0.05). The daily levodopa-equivalent dose was reduced by 21% (p = 0.018). Neuropsychological tests revealed an improvement in mental flexibility and a trend toward reduced letter fluency. There were no permanent surgical complications. Of the 16 participants with symmetrical disease, five required implantation of the DBS unit on the second side. Conclusions Unilateral STN DBS is an effective and safe treatment for selected patients with advanced PD. Unilateral STN DBS provides improvement of contralateral motor symptoms of PD as well as quality of life, reduces requirements for medication, and possibly enhances mental flexibility. This method of surgical treatment may be associated with a reduced risk and may provide an alternative to bilateral STN DBS for PD, especially in older patients or patients with asymmetry of parkinsonism.

Neurology ◽  
2019 ◽  
Vol 92 (10) ◽  
pp. e1109-e1120 ◽  
Author(s):  
W.M. Michael Schuepbach ◽  
Lisa Tonder ◽  
Alfons Schnitzler ◽  
Paul Krack ◽  
Joern Rau ◽  
...  

ObjectiveTo investigate predictors for improvement of disease-specific quality of life (QOL) after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson disease (PD) with early motor complications.MethodsWe performed a secondary analysis of data from the previously published EARLYSTIM study, a prospective randomized trial comparing STN-DBS (n = 124) to best medical treatment (n = 127) after 2 years follow-up with disease-specific QOL (39-item Parkinson's Disease Questionnaire summary index [PDQ-39-SI]) as the primary endpoint. Linear regression analyses of the baseline characteristics age, disease duration, duration of motor complications, and disease severity measured at baseline with the Unified Parkinson’s Disease Rating Scale (UPDRS) (UPDRS-III “off” and “on” medications, UPDRS-IV) were conducted to determine predictors of change in PDQ-39-SI.ResultsPDQ-39-SI at baseline was correlated to the change in PDQ-39-SI after 24 months in both treatment groups (p < 0.05). The higher the baseline score (worse QOL) the larger the improvement in QOL after 24 months. No correlation was found for any of the other baseline characteristics analyzed in either treatment group.ConclusionImpaired QOL as subjectively evaluated by the patient is the most important predictor of benefit in patients with PD and early motor complications, fulfilling objective gold standard inclusion criteria for STN-DBS. Our results prompt systematically including evaluation of disease-specific QOL when selecting patients with PD for STN-DBS.Clinicaltrials.gov identifierNCT00354133.


2018 ◽  
Vol 130 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Tsinsue Chen ◽  
Zaman Mirzadeh ◽  
Kristina M. Chapple ◽  
Margaret Lambert ◽  
Holly A. Shill ◽  
...  

OBJECTIVERecent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called “asleep” DBS, and historical cohorts undergoing “awake” DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution.METHODSPD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson’s Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events.RESULTSSix-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively).CONCLUSIONSIn PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.


2020 ◽  
Vol 132 (3) ◽  
pp. 721-732 ◽  
Author(s):  
Suzhen Lin ◽  
Yiwen Wu ◽  
Hongxia Li ◽  
Chencheng Zhang ◽  
Tao Wang ◽  
...  

OBJECTIVESurgical procedures involving deep brain stimulation (DBS) of the globus pallidus internus (GPi) or subthalamic nucleus (STN) are well-established treatments for isolated dystonia. However, selection of the best stimulation target remains a matter of debate. The authors’ objective was to compare the effectiveness of DBS of the GPi and the STN in patients with isolated dystonia.METHODSIn this matched retrospective cohort study, the authors searched an institutional database for data on all patients with isolated dystonia who had undergone bilateral implantation of DBS electrodes in either the GPi or STN in the period from January 30, 2014, to June 30, 2017. Standardized assessments of dystonia and health-related quality of life using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and SF-36 were conducted before and at 1, 6, and 12 months after surgery. No patients were lost to the 6-month follow-up; 5 patients were lost to the 12-month follow-up.RESULTSBoth GPi (14 patients) and STN (16 patients) stimulation produced significant improvement in dystonia and quality of life in all 30 patients found in the database search. At the 1-month follow-up, however, the percentage improvement in the BFMDRS total movement score was significantly (p = 0.01) larger after STN DBS (64%) than after GPi DBS (48%). At the 12-month follow-up, the percentage improvement in the axis subscore was significantly (p = 0.03) larger after GPi DBS (93%) than after STN DBS (83%). Also, the total amount of electrical energy delivered was significantly (p = 0.008) lower with STN DBS than with GPi DBS (124 ± 52 vs 192 ± 65 μJ, respectively).CONCLUSIONSThe GPi and STN are both effective targets in alleviating dystonia and improving quality of life. However, GPi stimulation may be better for patients with axial symptoms. Moreover, STN stimulation may produce a larger clinical response within 1 month after surgery and may have a potential economic advantage in terms of lower battery consumption.


2020 ◽  
Vol 9 (3) ◽  
pp. 69
Author(s):  
Kuo Liu

<p>Deep Brain Stimulation, especially STN-DBS, is one of the most prevalent treatments for the Parkinson’s Disease. Previous researches already showed its positive effects on the general conditions of the patients but lack evaluation of its influence on the cognitive ability of the patients. A comparison in the effect of DBS and surgical lesioning procedures can determine DBS’s influence on the quality of life and confirm whether it is the most optimal treatment. This proposal reviewed previous researches about the influence of STN-DBS and proposed a study on its influence of patients’ cognitive ability.</p>


Neurology ◽  
2017 ◽  
Vol 89 (19) ◽  
pp. 1944-1950 ◽  
Author(s):  
Matthew A. Brodsky ◽  
Shannon Anderson ◽  
Charles Murchison ◽  
Mara Seier ◽  
Jennifer Wilhelm ◽  
...  

Objective:To compare motor and nonmotor outcomes at 6 months of asleep deep brain stimulation (DBS) for Parkinson disease (PD) using intraoperative imaging guidance to confirm electrode placement vs awake DBS using microelectrode recording to confirm electrode placement.Methods:DBS candidates with PD referred to Oregon Health & Science University underwent asleep DBS with imaging guidance. Six-month outcomes were compared to those of patients who previously underwent awake DBS by the same surgeon and center. Assessments included an “off”-levodopa Unified Parkinson’s Disease Rating Scale (UPDRS) II and III, the 39-item Parkinson's Disease Questionnaire, motor diaries, and speech fluency.Results:Thirty participants underwent asleep DBS and 39 underwent awake DBS. No difference was observed in improvement of UPDRS III (+14.8 ± 8.9 vs +17.6 ± 12.3 points, p = 0.19) or UPDRS II (+9.3 ± 2.7 vs +7.4 ± 5.8 points, p = 0.16). Improvement in “on” time without dyskinesia was superior in asleep DBS (+6.4 ± 3.0 h/d vs +1.7 ± 1.2 h/d, p = 0.002). Quality of life scores improved in both groups (+18.8 ± 9.4 in awake, +8.9 ± 11.5 in asleep). Improvement in summary index (p = 0.004) and subscores for cognition (p = 0.011) and communication (p < 0.001) were superior in asleep DBS. Speech outcomes were superior in asleep DBS, both in category (+2.77 ± 4.3 points vs −6.31 ± 9.7 points (p = 0.0012) and phonemic fluency (+1.0 ± 8.2 points vs −5.5 ± 9.6 points, p = 0.038).Conclusions:Asleep DBS for PD improved motor outcomes over 6 months on par with or better than awake DBS, was superior with regard to speech fluency and quality of life, and should be an option considered for all patients who are candidates for this treatment.Clinicaltrials.gov identifier:NCT01703598.Classification of evidence:This study provides Class III evidence that for patients with PD undergoing DBS, asleep intraoperative CT imaging–guided implantation is not significantly different from awake microelectrode recording–guided implantation in improving motor outcomes at 6 months.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yu Diao ◽  
Yutong Bai ◽  
Tianqi Hu ◽  
Zixiao Yin ◽  
Huangguang Liu ◽  
...  

Pain from Parkinson's disease (PD) is a non-motor symptom affecting the quality of life and has prevalence of 20–80%. However, it is unclear whether subthalamic nucleus deep brain stimulation (STN–DBS), a well-established treatment for PD, is effective forPD-related pain. Thus, the objective of this meta-analysis was to investigate the efficacy of STN-DBS on PD-related pain and explore how its duration affects the efficacy of STN-DBS. A systematic search was performed using PubMed, Embase, and the Cochrane Library. Nine studies included numerical rating scale (NRS), visual analog scale (VAS), or non-motor symptom scale (NMSS) scores at baseline and at the last follow-up visit and therefore met the inclusion criteria of the authors. These studies exhibited moderate- to high-quality evidence. Two reviewers conducted assessments for study eligibility, risk of bias, data extraction, and quality of evidence rating. Random effect meta-analysis revealed a significant change in PD-related pain as assessed by NMSS, NRS, and VAS (P &lt;0.01). Analysis of the short and long follow-up subgroups indicated delayed improvement in PD-related pain. These findings (a) show the efficacy of STN-DBS on PD-related pain and provide higher-level evidence, and (b) implicate delayed improvement in PD-related pain, which may help programming doctors with supplement selecting target and programming.Systematic Review Registration: This study is registered in Open Science Framework (DOI: 10.17605/OSF.IO/DNM6K).


2020 ◽  
pp. 85-88
Author(s):  
Anjali Gera ◽  
Gian Pal

More than 50% of patients with Parkinson disease (PD) can have chronic pain. PD pain has been associated with reduced quality of life scores on validated measures. The most common source of PD pain is musculoskeletal in origin. This pain may manifest as rigidity, cramps, shoulder discomfort, spinal or hand and foot deformities, dystonic pain, or nonradicular back pain. Our case illustrates improvement in chronic pain following bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) surgery in a 45-year-old patient with PD. Approximately 1 year after PD onset, he developed constant pain and tremor in his left upper extremity, which gradually worsened over time. Initially, carbidopa/levodopa completely alleviated both his arm tremor and pain. Over the next several years, he developed off periods that were associated with bothersome tremor and pain, and on periods that were associated with prominent neck and left arm dyskinesia, both of which were associated with significant pain. At age 60 years, after 15 years of PD, he underwent bilateral STN DBS implantation. Following DBS, he had significant improvement in his left arm tremor, rigidity, motor fluctuations, and pain. He also had a 70% reduction in his dopaminergic medication and complete resolution of dyskinesia and neck pain.


2020 ◽  
Vol 19 (3) ◽  
pp. 234-240
Author(s):  
Kyle T Mitchell ◽  
John R Younce ◽  
Scott A Norris ◽  
Samer D Tabbal ◽  
Joshua L Dowling ◽  
...  

Abstract BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients &gt;75 yr old, 52 patients &lt;75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.


Sign in / Sign up

Export Citation Format

Share Document