Development of Oral Self-Nanoemulsifying Drug Delivery System (SNEDDS) Of Rosuvastatin Calcium: Formulation, Characterization, And In-Vitro Drug Release Study

2021 ◽  
Vol 7 (2) ◽  
pp. 692-695
Author(s):  
Thomas Eickner ◽  
Michael Teske ◽  
Natalia Rekowska ◽  
Volkmar Senz ◽  
Klaus-Peter Schmitz ◽  
...  

Abstract For the investigation of in vitro drug release, methods have been used in which samples of drug delivery systems are immersed in release medium. The medium is used to measure drug concentration via chromatography or photometry. These systems are suitable to investigate the drug release of different systems or to simulate tissue environments. When considering predominantly humid regions, e.g. for drug release into the cochlea through the round window membrane by a drug delivery system placed at that membrane, reproducible in vitro determination of drug release becomes particularly challenging. In this study the development of a system is reported that allows the investigation of the in vitro drug release simulating such conditions. The presented test system consists of an alginate hydrogel in glass vials simulating the biological membrane, which separates the drug delivery system from the medium filled compartment. Saline is used as release medium and injected under the hydrogel. The samples are placed on top of the hydrogel, which slightly contacts the medium surface. The drug concentration in the release medium was determined by HPLC measurements. This system allows for testing the release of dexamethasone without the samples being completely surrounded by medium. The hydrogel mediates the diffusion of the drug by ensuring the contact with the medium. Release was monitored for more than 23 days. The presented concept was successfully designed and manufactured. The system is inexpensive and can be duplicated easily. In this study, it was used to monitor the drug release of dexamethasone from PEGDA700 derived polymer. One challenge that remains to be considered is the low mechanical stability of the hydrogel, which results in a need for repeated manufacturing during the handling of the system.


Author(s):  
UMESH KUMAR SHARMA

Objective: In the present research, the main objective was to investigate the possibility of designing, fabricating, and optimizing a disposable ocular film-based drug delivery system. Methods: Moxifloxacin hydrochloride was loaded onto the prepared disposable ocular films by the soaking method. Results: The drug loading conditions were studied, and it was found that the maximum drug loading was achieved in 3 hours at pH 6.5 of the drug solution. It was also observed that the drug loading efficacy and in vitro drug release profile can be monitored by varying the ocular film composition. The ocular films were then characterized for thickness uniformity, size uniformity, weight uniformity, swelling index, surface pH, breaking on elongation, folding endurance, bio-adhesive strength, transparency, drug loading efficiency, moisture content, morphological characteristics, and in vitro drug release profiles. Conclusion: Based on the results, it was concluded that the developed disposable ocular films demonstrate a significant prolonged drug release within the therapeutic range of up to 12 h, which is promising as a novel disposable contact lens-based ocular drug delivery system.


Author(s):  
Anukumar E ◽  
Nagaraja T S ◽  
Yogananda R ◽  
Bharathi D R

The present work is to prepare and characterization of self nano emulsifying drug delivery system containing Anti-hypertensive drug. Losartan is a competitive antagonist and inverse agonist of angiotensin 2 receptor. The SNEDDS is prepared by Sonication method using a components of SPAN 60/Eudragit RS 100 as a surfactant, PVA as a Co-surfactant, Iso propyl alcohol as a solvent and DCM as a co-solvent. The prepared SNEDDS was evaluated for Fourier transform infrared spectroscopy, Surface morphology, particle size, zeta potential,  drug entrapment efficiency, visual assessment, self-emulsification time, Robustness to dilution, in-vitro drug release and short term stability studies. The in-vitro drug release data of all the formulations were found to be zero order over a period of 24 h and Formulation F7 shows good results for the drug release kinetics as controlled release. The stability studies data was found that there was no such difference in drug EE and in-vitro drug release.


Author(s):  
Subramanian S ◽  
Senith SK

Transdermal drug delivery is an alternative route for systemic drug delivery which minimizes the absorption and increases the bioavailability. Orally clopidogrel bisulfate has a short elimination half-life (7-8 h), low oral bioavailability (50 %) undergoes extensive first pass metabolism (85 %) and frequent high doses (75 mg) are required to maintain the therapeutic level as a result. The purpose of this research was formulation and evaluation of transdermal drug delivery system of clopidogrel bisulfate using various polymers such as HPMC and EC by solvent casting technique for improvement of bioavailability of drug and reducing toxic effects. The developed transdermal patches may increase the therapeutic efficacy and reduce toxic effect of clopidogrel bisulfate. The prepared transdermal drug delivery system of clopidogrel bisulfate using different polymers such as HPMC and EC had shown good & promising results for all the evaluated parameters. Based on the in vitro drug release, drug content, weight variation, tensile strength, thickness and folding endurance results formulation F2 was concluded as an optimized formulation which shows its higher percentage of drug release. Keyword: Clopidogrel bisulfate; Transdermal patch; TDDS; Solvent evaporation; In vitro drug release


Sign in / Sign up

Export Citation Format

Share Document